Прокариотические и эукариотические. Конспект урока "различия в строении прокариот и эукариот"

Важнейшая, основополагающая особенность эукариотических клеток связана с расположением генетического аппарата в клетке. Генетический аппарат всех эукариот находится в ядре и защищён ядерной оболочкой (по-гречески «эукариот» значит имеющий ядро). ДНК эукариот линейная (у прокариот ДНК кольцевая и находится в особой области клетки - нуклеоиде, который не отделён мембраной от остальной цитоплазмы). Она связана с белками-гистонами и другими белками хромосом, которых нет у бактерий.

В жизненном цикле эукариот обычно присутствуют две ядерные фазы (гаплофаза и диплофаза). Первая фаза характеризуется гаплоидным (одинарным) набором хромосом, далее, сливаясь, две гаплоидные клетки (или два ядра) образуют диплоидную клетку (ядро), содержащую двойной (диплоидный) набор хромосом. Иногда при следующем делении, а чаще спустя несколько делений клетка вновь становится гаплоидной. Такой жизненный цикл и в целом диплоидность для прокариот не характерны.

Третье, пожалуй, самое интересное отличие, - это наличие у эукариотических клеток особых органелл, имеющих свой генетический аппарат, размножающихся делением и окружённых мембраной. Эти органеллы - митохондрии и пластиды. По своему строению и жизнедеятельности они поразительно похожи на бактерий. Это обстоятельство натолкнуло современных учёных на мысль, что подобные организмы являются потомками бактерий, вступившими в симбиотические отношения с эукариотами. Прокариоты характеризуются малым количеством органелл, и ни одна из них не окружена двойной мембраной. В клетках прокариот нет эндоплазматического ретикулума, аппарата Гольджи, лизосом.

Ещё одно важное различие между прокариотами и эукариотами - наличие у эукариот эндоцитоза, в том числе у многих групп - фагоцитоза. Фагоцитозом (дословно «поедание клеткой») называют способность эукариотических клеток захватывать, заключая в мембранный пузырёк, и переваривать самые разные твёрдые частицы. Этот процесс обеспечивает в организме важную защитную функцию. Впервые он был открыт И. И. Мечниковым у морских звезд. Появление фагоцитоза у эукариот скорее всего связано со средними размерами (далее о размерных различиях написано подробнее). Размеры прокариотических клеток несоизмеримо меньше, и поэтому в процессе эволюционного развития эукариот у них возникла проблема снабжения организма большим количеством пищи. Как следствие среди эукариот появляются первые настоящие, подвижные хищники.

Большинство бактерий имеет клеточную стенку, отличную от эукариотической (далеко не все эукариоты имеют её). У прокариот это прочная структура, состоящая главным образом из муреина (у архей из псевдомуреина). Строение муреина таково, что каждая клетка окружена особым сетчатым мешком, являющимся одной огромной молекулой. Среди эукариот клеточную стенку имеют многие протисты, грибы и растения. У грибов она состоит из хитина и глюканов, у низших растений - из целлюлозы и гликопротеинов, диатомовые водоросли синтезируют клеточную стенку из кремниевых кислот, у высших растений она состоит из целлюлозы, гемицеллюлозы и пектина. Видимо, для более крупных эукариотических клеток стало невозможно создавать клеточную стенку из одной молекулы высокую по прочности. Это обстоятельство могло заставить эукариот использовать иной материал для клеточной стенки. Другое объяснение состоит в том, что общий предок эукариот в связи с переходом к хищничеству утратил клеточную стенку, а затем были утрачены и гены, отвечающие за синтез муреина. При возврате части эукариот к осмотрофному питанию клеточная стенка появилась вновь, но уже на другой биохимической основе.

Разнообразен и обмен веществ у бактерий. Вообще всего выделяют четыре типа питания, и среди бактерий встречаются все. Это фотоавтотрофные, фотогетеротрофные, хемоавтотрофные, хемогетеротрофные (фототрофные используют энергию солнечного света, хемотрофные используют химическую энергию).

Клетки микроорганизмов по принципу клеточной организации могут быть двух типов - прокариотические и эукариотические. Простейшие, микроводоросли и низшие грибы относятся к эукариотам, а бактерии и археи являются прокариотами.

У прокариот наследственный материал (нуклеоид) представлен, как правило, кольцевой молекулой ДНК, соответствующей одной хромосоме. Эукариоты имеют окруженное ядерной мембраной ядро, содержащее набор хромосом. Внутреннее пространство эукариотической клетки разделено на компартменты разветвленной сетью мембран эндоплазматического ретикулума (ЭПР). У прокариот разрастания ЦПМ внутрь клетки значительно менее выражены. Эукариоты содержат органеллы, отделенные от цитоплазмы собственными мембранами. В прокариотической клетке структуры, участвующие в дыхании и фотосинтезе, локализованы в цитоплазматической мембране (ЦПМ) или ее выростах. Рибосомы прокариот свободно лежат в цитоплазме, тогда как эукариотические рибосомы имеют более сложное строение и могут быть прикреплены к мембранам эндоплазматической сети. У прокариот отмечено широкое распространение такого компонента клеточных стенок как сетчатый полисахарид пептидогликан (муреин). В клетках эукариот он никогда не встречается. В целом для прокариот характерно более простое устройство клетки. Прокариотические клетки могут транспортировать из окружающей среды только растворенные в воде соединения, в то время как некоторые эукариоты способны осуществлять поглощение твердых веществ и капель жидкостей, несмешивающихся с водой. Процессы деления у эукариот сложнее, чем у прокариотических клеток. В то же время прокариоты обладают значительно более широкими метаболическими возможностями. Они способны получать энергию, окисляя восстановленные неорганические соединения, осуществлять фотосинтез без выделения кислорода, использовать атмосферный азот в конструктивном метаболизме и образовывать метан в процессе жизнедеятельности.

Ряд отличительных особенностей эукариот и прокариот приведен в табл.1.

Таблица 1.

Некоторые отличительные признаки эукариот и прокариот.

Признак

Прокариоты

Эукариоты

Наименьший размер клетки - 0,05 мкм

Наличие оформленного ядра

Наличие автономных органелл

Рибосомы распределены в цитоплазме

Рибосомы прикреплены к ЭПР

Жгутики (если есть) диаметром 0,01-0,02 мкм

Жгутики (если есть) диаметром около 0,2 мкм

Число хромосом

Кольцевая хромосома

Линейные хромосомы

Рибосомы с константой седиментации 70S

Рибосомы с константой седиментации 80S

Константы седиментации рибосомальной РНК: 5S, 16S, 23S

Константы седиментации рибосомальной РНК: 5S, 5,85S, 18S, 28S

Присутствие пептидогликана

Клеточное деление происходит в результате митоза

Возможность мейоза

Перенос генов и рекомбинация включают гаметогенез и образование зиготы

Возможность латерального (горизонтального) переноса генов

Диффузия или транспорт веществ через мембрану

Эндоцитоз

Дыхательный и фотосинтезирующий аппарат ассоциирован с ЦПМ или ее выростами

Способность к хемолитотрофии

Способность к фиксации молекулярного азота

Способность к метаногенезу

Способность к аноксигенному фотосинтезу

Внутренние структуры прокариотической клетки

В прокариотической клетке различают две области - цитоплазму и ядерную зону. Цитоплазма представляет собой сложную смесь участвующих в метаболизме и инертных соединений, а также является местом ферментативных реакций. В цитоплазме прокариот лежат рибосомы. Они меньше рибосом эукариотической клетки, но сходны с рибосомами ее органелл. Цитоплазма может содержать включения и запасные вещества. Включения - это различные мембранные пузырьки, трубочки, плоские мешочки, образованные инвагинациями цитоплазматической мембраны. К таким структурам относят мезосому, точные функции которой до сих пор неясны. Считается, что она может играть роль в делении клетки, образуя септу, а затем и поперечную перегородку, а также служить местом прикрепления микробной хромосомы, участвуя в репликации и последующем расхождении дочерних клеток. Мезосомы могут также принимать участие в процессах секреции. Однако некоторые исследователи считают, что мезосома - это артефакт, возникающий при фиксации клеток для электронной микроскопии. Многие фототрофные, нитрифицирующие и метанокисляющие микроорганизмы имеют развитую сеть внутрицитоплазматических мембран, совершенно отличную от мезосом. Для прокариот характерно, что вся эта система представляет собой выросты ЦПМ и всегда с ней связана.

В некоторых клетках содержатся сигарообразные газовые вакуоли (аэросомы), окруженные белковой оболочкой и выполняющие у водных организмов роль регуляторов плавучей плотности. У микроорганизмов, использующих углекислый газ как источник углерода, могут присутствовать карбоксисомы, являющиеся вместилищами ключевого фермента цикла Кальвина. Карбоксисомы покрыты тонкой мембраной белковой природы. Некоторые спорообразующие бактерии (например, Bacillus thuringiensis ) могут содержать параспоральные тельца белковой природы, токсичные для отдельных видов насекомых.

Многие микроорганизмы откладывают внутриклеточно различные запасные вещества (полисахариды, поли-β-гидроксибутират, полифосфаты, сера и др.). Все запасные вещества присутствуют в клетке в химически инертной форме.

В 1956 г внутри бактериальных клеток была обнаружена "ядерная зона", или нуклеоид, где размещена бактериальная хромосома. В середине 60-х годов было установлено состояние суперскрученности бактериальной ДНК, а затем в течение 10 лет были обнаружены ферменты, которые отвечают за ее сверхспирализацию и раскручивание (топоизомеразы, гиразы). В 70-х годах стало возможным выделение компактной формы тотальной ДНК из клеток бактерий.

По представлениям прокариотическая хромосома содержит в своем составе большие молекулы ДНК как носители генетической информации, молекулы иРНК, транскрибируемые с определенных генов, и набор обслуживающих белков-ферментов. Они выполняют функции репарации, участвуют в репликации и транскрипции, а также скручивают и правильно складывают ДНК внутри клетки.

Прокариотическая ДНК обнаружена в кольцевой и линейной формах. ДНК в виде кольцевой молекулы присутствует у большинства прокариот.

У значительного количества микроорганизмов наряду с основной хромосомой обнаружены плазмиды. Это кольцевые двухцепочечные молекулы ДНК, которые могут существовать и реплицироваться как независимо от бактериальной хромосомы, так и быть интегрированными в нее. Плазмиды не являются обязательным для клетки элементом, хотя могут давать определенные преимущества. Известно, что плазмиды могут нести гены устойчивости к антибиотикам, тяжелым металлам, различным лекарственным препаратам, гены факторов патогенности, гены, определяющие дополнительную метаболическую активность.

Цитоплазматическая мембрана прокариот, ее строение и свойства

Любая живая клетка отделена от окружающей среды тонкой оболочкой особого строения - цитоплазматической мембраной (ЦПМ). Эукариоты имеют многочисленные внутриклеточные мембраны, отделяющие пространство органелл от цитоплазмы, тогда как для большинства прокариот ЦПМ - это единственная мембрана клетки. У некоторых бактерий и архей она может внедряться внутрь цитоплазмы, образуя выросты и складки различной формы.

ЦПМ всех клеток построены по одному принципу и состоят из простых фосфолипидов, образующих мембранный бислой, куда погружены многочисленные белки.

Большинство биологических мембран имеют толщину от 4 до 7 нм. При контрастировании тяжелыми металлами все клеточные мембраны, просматриваемые в просвечивающем электронном микроскопе, похожи друг на друга и имеют вид трехслойных образований с двумя внешними темными электронноплотными слоями, показывающими положение полярных (головных) групп липидов, и светлым средним слоем гидрофобного внутреннего пространства.

ЦПМ обладает избирательной проницаемостью, препятствуя свободному продвижению большинства веществ внутрь и из клетки, и регулирует потоки питательных веществ и метаболитов. Наличие гидрофобного слоя, образованного мембранными липидами, препятствует прохождению через нее любых полярных молекул и макромолекул. Это свойство позволяет клеткам, существующим в большинстве случаев в разбавленных растворах, удерживать полезные макромолекулы и метаболические предшественники.

ЦПМ осуществляет транспорт питательных веществ внутрь клетки и продуктов метаболизма из клетки. Обычно прокариоты имеют значительное число очень специфических транспортных систем. Для переноса структурных компонентов клеточной поверхности и других секретируемых факторов мембрана содержит экспортную систему. В мембране прокариот сосредоточены многие метаболические процессы. ЦПМ играет значительную роль в движении, росте и делении клеток.

Химический состав и строение клеточной стенки - важный систематический признак, по которому все прокариоты подразделяются на следующие группы: грамположительные, грамотрицательные и не имеющие клеточной стенки. В отличии от бактерий археи не синтезируют пептидогликан, но некоторые из них образуют псевдомуреин. Грамположительные бактерии содержат в клеточной стенке до 40 раз больше муреина (пептидогликана) по сравнению с грамотрицательными, однако у них отсутствует внешняя мембрана. Клеточная стенка - это высокоорганизованная клеточная структура, выполняющая множество функций. Она противостоит высокому осмотическому давлению и определяет форму клетки. У бактерий основным опорным элементом клеточной стенки является пептидогликан (муреин), формирующий замкнутый мешок. Этот сетчатый гетерополисахарид состоит из цепей двух чередующихся аминосахаров - N-ацетилглюкозамина и N-ацетилмурамовой кислоты, сшитых между собой β-1,4-гликозидными связями. Полисахаридные цепи связаны поперечными пептидными мостиками. Некоторые археи содержат аналогичный по архитектуре биополимер (псевдомуреин), состоящий из других исходных материалов.

Из-за разницы в структуре клеточных стенок микроорганизмы по-разному выглядят на препаратах при способе окраски, предложенном датским микробиологом Хансом Грамом: грамположительные удерживают генцианвиолет при обработке спиртом, а грамотрицательные обесцвечиваются.

Типичные грамположительные микроорганизмы формируют толстый, многослойный муреиновый мешок (20-50 нм). Грамотрицательные бактерии обладают более сложной клеточной оболочкой, имеющей внешнюю мембрану, состоящую из двух неодинаковых слоев. Ее внутренний слой составлен фосфолипидами, а внешний - липополисахаридами (ЛПС). ЛПС образуют на поверхности клетки отрицательный заряд и часто являются токсичными. Они имеют сложное химическое строение и обладают антигенными свойствами. По сравнению с ЦПМ внешняя мембрана более инертна метаболически и содержит меньше белков. Эти белки обеспечивают транспорт различных веществ, участвуют в сборке поверхностных структур и конъюгации, способствуют экскреции ферментов в окружающую среду. Внешняя мембрана содержит белки-порины, формирующие поры. ВМ обладает избирательной проницаемостью и участвует в контакте клеток между собой и с поверхностью неживых предметов. Она удерживает ряд внешних структурных образований, например, пили.

Между цитоплазматической и внешней мембранами возникает уникальное образование, называемое периплазматическим пространством (периплазмой). Муреиновый мешок встроен в периплазму и состоит всего лишь из одного слоя (~3 нм толщиной). Наличие дополнительного барьера проницаемости в виде внешней мембраны позволяет уменьшить толщину муреинового слоя и дает возможность эффективно использовать ценные продукты метаболизма муреина, которые накапливаются в периплазматическом пространстве клетки при ее росте

На поверхности прокариотической клетки часто присутствуют нитевидные образования белковой природы (пили, или фимбрии). Они отвечают за прикрепление клетки к неживому объекту и к другой клетке, помогают принимать и передавать ДНК при конъюгации, служат акцепторами бактериофагов.

Размер пилей варьирует от 0,1 до 20 мкм в длину и от 2 до 11 нм в диаметре. Встречаются пили различной архитектуры: от тонких нитевидных до толстых прочных палочкообразных с осевыми отверстиями. Пили могут располагаться перитрихиально или только на конце клетки. Одна клетка может иметь фимбрии разных типов.

Поверх клеточных стенок многих прокариот можно обнаружить слизистые капсулы и чехлы разной толщины. Чаще всего их основой являются полисахариды, реже - гликопротеиды и полипептиды. Капсулы в отличие от чехлов имеют значительную толщину и состоят из более диффузного материала. Поверхность колоний клеток с капсулами выглядит гладкой, влажной и блестящей. Основная роль капсул для патогенных видов - предохранение клетки от узнавания и поглощения фагоцитами. Считается также, что капсулы играют защитную роль, затрудняя диффузию вредных веществ из окружающей среды и способствуя сохранению влаги при высушивании. Материал капсулы может быть долговременным запасом питательных веществ в условиях голодания.

У некоторых прокариот обнаружены регулярно структурированные S-слои, выстилающие наружную поверхность клеточной оболочки равномерно упакованными белковыми образованиями правильной формы. У грамотрицательных бактерий S-слои прилегают непосредственно к внешней мембране, у грамположительных - ассоциированы с поверхностью пептидогликана. S-слои защищают клетку от флуктуаций рН и резких изменений концентраций каких-либо ионов, осмотического стресса, от действия ферментов или бактерий-хищников вроде Bdellovibrio. Наличие S-слоя у патогенного микроорганизма повышает его вирулентность, так как помогает ему справиться с атакой комплемента и избежать фагоцитоза.

Важнейшая, основополагающая особенность эукариотических клеток связана с расположением генетического аппарата в клетке. Генетический аппарат всех эукариот находится в ядре и защищён ядерной оболочкой. ДНК эукариот линейная (у прокариот ДНК кольцевая и находится в особой области клетки -нуклеоиде, который не отделён мембраной от остальной цитоплазмы). Она связана с белками-гистонами и другими белками хромосом, которых нет у бактерий.

В жизненном цикле эукариот обычно присутствуют две ядерные фазы (гаплофаза и диплофаза). Первая фаза характеризуется гаплоидным (одинарным) набором хромосом, далее, сливаясь, две гаплоидные клетки (или два ядра) образуют диплоидную клетку (ядро), содержащую двойной (диплоидный) набор хромосом. Иногда при следующем делении, а чаще спустя несколько делений клетка вновь становится гаплоидной. Такой жизненный цикл и в целом диплоидность для прокариот не характерны.

Третье отличие - это наличие у эукариотических клеток особых органелл, имеющих свой генетический аппарат, размножающихся делением и окружённых мембраной. Эти органеллы - митохондрии и пластиды. По своему строению и жизнедеятельности они поразительно похожи на бактерий.. Прокариоты характеризуются малым количеством органелл, и ни одна из них не окружена двойной мембраной.

Ещё одно важное различие между прокариотами и эукариотами - наличие у эукариот эндоцитоза, в том числе у многих групп - фагоцитоза. Фагоцитозом называют способность эукариотических клеток захватывать, заключая в мембранный пузырёк, и переваривать самые разные твёрдые частиц. Размеры прокариотических клеток несоизмеримо меньше, и поэтому в процессе эволюционного развития эукариот у них возникла проблема снабжения организма большим количеством пищи. Как следствие среди эукариот появляются первые настоящие, подвижные хищники.

Большинство бактерий имеет клеточную стенку, отличную от эукариотической. Строение муреина таково, что каждая клетка окружена особым сетчатым мешком, являющимся одной огромной молекулой. Среди эукариот клеточную стенку имеют многие протисты, грибы и растения. У грибов она состоит из хитина и глюканов, у низших растений - из целлюлозы и гликопротеинов, диатомовые водоросли синтезируют клеточную стенку из кремниевых кислот, у высших растений она состоит из целлюлозы, гемицеллюлозы и пектина. Видимо, для более крупных эукариотических клеток стало невозможно создавать клеточную стенку из одной молекулы высокую по прочности. Это обстоятельство могло заставить эукариот использовать иной материал для клеточной стенки. Другое объяснение состоит в том, что общий предок эукариот в связи с переходом к хищничеству утратил клеточную стенку, а затем были утрачены и гены, отвечающие за синтез муреина. При возврате части эукариот к осмотрофному питанию клеточная стенка появилась вновь, но уже на другой биохимической основе.



Разнообразен и обмен веществ у бактерий. Вообще всего выделяют четыре типа питания, и среди бактерий встречаются все. Это фотоавтотрофные, фотогетеротрофные, хемоавтотрофные, хемогетеротрофные. Эукариоты же либо сами синтезируют энергию из солнечного света, либо используют готовую энергию такого происхождения. Это может быть связано с появлением среди эукариотов хищников, необходимость синтезировать энергию для которых отпала.

Ещё одно отличие - строение жгутиков. У бактерий жгутиками являются полые нити диаметром 15–20 нм из белка флагеллина. Строение жгутиков эукариот гораздо сложнее. Они представляют собой вырост клетки, окруженный мембраной, и содержат цитоскелет (аксонему) из девяти пар периферических микротрубочек и двух микротрубочек в центре. В отличие от вращающихся прокариотическох жгутиков жгутики эукариот изгибаются или извиваются.

Две группы рассматриваемых нами организмов, как уже было сказано, сильно отличаются и по своим средним размерам. Диаметр прокариотической клетки составляет обычно 0,5–10 мкм, когда тот же показатель у эукариот составляет 10–100 мкм. Объём такой клетки в 1000–10000 раз больше, чем прокариотической.

Клетки эукариот содержат как более крупные рибосомы. Первые прокариоты возникли в процессе эволюции около 3,5 млрд. лет назад, от них около 1,2 млрд. лет назад произошли эукариотические организмы.

8.Бактерии - это одноклеточные организмы растительного происхождения, но лишенные хлорофилла. Они относятся к прокариотам, видны в световой микроскоп, размеры их измеряются в микрометрах. Бактерии растут на искусственных питательных средах, размножение происходит бинарным делением.

Бактерии делятся


вызывают болезни челове- вызывают заболевания не вызывают забо-

ка, животных, растений при определенных усло- леваний

Морфология - это форма, размер бактерий, расположение клеток в препарате. Различают три морфологических формы бактерий:

Различают три морфологических формы бактерий:

1) кокки 2) палочки 3) извитые


1. Кокки: форма - круглая

размер - мелкие

расположение в препаратах - 6 разновидностей:

а) микрококки б) диплококки в) тетракокки


гонококки пневмококки

г) сарцины в) стафилококки д) стрептококки


2. Палочковидные :

· форма - цилиндр

· размер: длина : толщина :

Крупные - толстые

Средних размеров - тонкие

· концы палочек – закругленные (кишечная палочка)

Прямые (сибиреязвенная палочка)

В виде утолщения (дифтерийная палочка)

· расположение - беспорядочное

В цепочку (стрептобактерии)

Попарно (диплобактерии)

В виде римских цифр II, V, X и т.д.

3. Извитые : форма – спиралевидная:

1. спириллы,

2. кампилобактерии

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядерного аппарата, называемого нуклеоидом. Имеются другие структуры: мезосома, хроматофоры, тилакоиды, вакуоли, включения полисахаридов, жировые капельки, капсула (микрокапсула, слизь), жгутики, пили. Некоторые бактерии способны образовывать споры.
Структуру и морфологию бактерий изучают с помощью различных методов микроскопии: световой, фазово-контрастной, интерференционной, темнопольной, люминесцентной и электронной.

Клеточная стенка

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А - консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core - ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты - бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.