Клеточная теория

Клетка представляет собой элементарную структурно-функциональную единицу организма.

Значение клеточной теории и история открытия

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Матиас Шлейден, Теодор Шванн и Рудольф Вирхов сформулировали клеточную теорию, основываясь на множестве исследований о клетке (183 8) .

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерий имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни .

Основные положения клеточной теории

  1. Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.
  2. Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
  3. Размножение клеток происходит путем их деления. Новые клетки всегда возникают из предшествующих клеток.

Дополнительные положения клеточной теории

  1. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот ("каждая молекула из молекулы").
  2. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (регуляция).

Клеточное строение

  • Эукариотная клетка
    • Клеточная оболочка - состоит из наружной мембраны (плазмолемма ) и наружного слоя, который представлен гликокаликсому животных, а у растений - целлюлозной оболочкой.
    • Цитоплазма - в ней
      • Клеточная матрица (цитозоль, гиалоплазма) - полужидкая среда цитоплазмы. Представляет собой коллоидный раствор, содержит органические и не органические компоненты. В ~ распложены органоиды и включения.
      • Органоиды - постоянные составные части клетки, имеющие определённое строение и выполняющие определённые функции.
        • Мембранные
          • Одномембранные
          • Двумембранные
        • Немембранные
      • Включения - временные структуры клетки, выполняющие следующие функции: 1) запас питательных в-в (зёрна крахмала, гликогена, капли жира), 2) продукты экскреции, 3) молекулы пигментов (меланин).

Клеточная оболочка состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Функции: 1) разграничительная и 2) транспортная. На сохранение целостности своей мембраны клетка не тратит энергии.

Гликокаликс представляет собой закреплённые в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную функцию.

Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов с вкрапленными в нее молекулами белков, в частности, поверхностных антигенов и рецепторов.

Эндоплазматическая сеть - система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС).

Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков.

Те образования, на стенках которых нет рибосом, относят к гладкому (или агранулярному) ЭПР, принимающему участие в синтезе липидов.

Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. Здесь созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом.

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации, после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками.

Рибосома — важнейший органоид живой клетки сферической или слегка овальной формы, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.

Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.

Лизосома — клеточный органоид, один из видов везикул, содержащий ряд ферментов — гидролаз, способных расщеплять белки, липиды и нуклеиновые кислоты, функциями которого являются переваривание захваченных клеткой частиц и уничтожение ненужных клетке структур.

Эти ферменты высвобождаются при разрушении лизосомы, так как она обладает весьма непрочной мембраной, легко разрывающейся под влиянием различных воздействий. Этот механизм лежит в основе автолиза тканей.

Разрыв лизосомы и выход в гиалоплазму расщепляющих ферментов сопровождается резким повышением их активности. Такого рода повышение активности ферментов наблюдается, например, в очагах некроза при инфаркте миокарда.

Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счет энзиматических (ферментативных) систем митохондрий.

Внутренняя полость митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.

Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответсвующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии.

Хлоропла́ст — зелёные пластиды, которые встречаются только в растительных клетках. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл. Являются двумембранными органеллами, имеют собственную ДНК, РНК. Предполагают, что хлоропласты возникли из цианобактерий.

Лейкопла́сты — бесцветные сферические пластиды в клетках растений. Лейкопласты образуются в запасающих тканях (клубнях, корневищах), клетках эпидермиса и других частях растений. Синтезируют и накапливают крахмал (так называемые амилопласты), жиры, белки. Лейкопласты содержат ферменты, с помощью которых из глюкозы, образованной в процессе фотосинтеза, синтезируется крахмал. На свету лейкопласты превращается в хлоропласты.

Хромопла́ст (окрашенные пласты) — окрашенные незелёные тела, заключающиеся в телах высших растений, в отличие от зелёных тел (хлоропластов).

Xромопласты содержат жёлтые, оранжевые и красноватые пигменты из ряда каротинов. Форма хромопластов разнообразна: они бывают круглые, многоугольные, палочковидные, веретенообразные, серповидные, трёхрогие и т. д. Xромопласты происходят большей частью из хлоропластов (хлорофилльных зёрен), которые теряют хлорофилл и крахмал, что заметно в лепестках, в ткани плодов и т. д. Развитие каротина в хлоропласте понятно из того, что первый в них содержится вместе с хлорофиллом. Так же как и у хлоропластов, у хромопластов пигмент образует в протоплазматической, бесцветной основе лишь отдельные включения, причем иногда в виде настоящих кристаллов, игольчатых, волосовидных, прямых или изогнутых и т. д.

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

Цитоскелет. К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

Вакуоль — ограниченный мембраной органоид, содержащийся в некоторых эукариотических клетках и выполняющий различные функции (секреция, экскреция и хранение запасных веществ). Вакуоли и их содержимое рассматриваются как обособленный от цитоплазмы компартмент. Вакуоли особенно хорошо заметны в клетках растений.

Сравнение клеточного строения растений, животных, грибов

Органоид

Функция

Бактерии

Растения

Животные

Ядро

Хранение наследственной информации, синтез РНК

Нет

Есть

Есть

Хромосома

Наследственный материал, состоящий из линейной ДНК

Нет

Есть

Есть

Рибосомы

Органеллы, состоящие из двух частей, производят синтез белка

Есть

Есть

Есть

Митохондрии

Органеллы, покрытые двойной мембраной, синтезируют АТФ

Нет

Есть

Есть

Комплекс Гольджи

Производит синтез сложных белков, полисахаридов, их накопление и секрецию

Нет

Есть

Есть

Эндоплазматическая сеть

Производит синтез и транспорт белков и липидов

Нет

Есть

Есть

Центриоль

Во время деления клетки образует веретено деления

Нет

Нет

Есть

Хлоропласты

Производят синтез органических веществ из воды и углекислого газа с выделением кислорода

Нет

Есть

Нет

Лейкопласты

Производят накопление крахмала

Нет

Есть

Нет

Хромопласты

Придают окраску плодам и цветкам растения, т.к. содержат ксантофилл

Нет

Есть

Нет

Лизосомы

Производят расщепление различных органических веществ

Нет

Нет

Есть

Клеточная оболочка

Полисахаридная оболочка над клеточной мембраной, защищающая клетку

Есть

Есть

Нет

Вакуоли

1. Накапливают клеточный сок 2. Переваривают частички пищи или выводят продукты распада (у одноклеточных)

Нет

Есть (1)

Есть (2)

Цитоскелет

Придаёт форму клетке

Нет

Есть

Есть

Органеллы для перемещения

Служат для перемещения в пространстве (реснички и др.)

Есть

Нет

Есть

Мезосомы

Осуществляют дыхание и синтез органических веществ

Есть

Нет

Нет

1. Клеточная теория
Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.
Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с развитием применения и усовершенствования различных оптических методов исследований.
Роберт Гук первым наблюдал с помощью увеличительных линз подразделение тканей пробки на «ячейки», или «клетки». Его описания послужили толчком для появления систематических исследований анатомии растений, которые подтвердили наблюдения Роберта Гука и показали, что разнообразные части растений состоят из тесно расположенных «пузырьков», или «мешочков». Позднее А. Левенгук открыл мир одноклеточных организмов и впервые увидел клетки животных. Позднее клетки животных были описаны Ф. Фонтана; но эти и другие многочисленные исследования не привели в то время к пониманию универсальности клеточного строения, к четким представлениям о том, что же являет собой клетка . Прогресс в изучении микроанатомии и клетки связан с развитие микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое, протоплазма. В протоплазме был открыт постоянный компонент клетки – ядро. Все эти многочисленные наблюдения позволили Т. Шванну в 1838 г. сделать ряд обобщений. Он показал, что клетки растений и животных принципиально сходны между собой. «Заслуга Т. Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он научил исследователей понимать их значение». Дальнейшее развитие эти представления получили в работах Р. Вирхова. Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужили главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология . Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.
Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток. В настоящее время клеточная теория постулирует:
1) Клетка – элементарная единица живого: – вне клетки нет жизни.
2) Клетка – единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование , состоящее из сопряженных функциональных единиц – органелл или органоидов.
3) Клетки сходны – гомологичны – по строению и по основным свойствам.
4) Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала: клетка от клетки.
5) Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных.
6) Клетки многоклеточных организмов тотипотентны, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией различных генов, что приводит к их морфологическому и функциональному разнообразию – к дифференцировке.
Представление о клетке как о самостоятельной жизнедеятельной единице было дано еще в работах Т. Шванна. Р. Вирхов также считал, что каждая клетка несет в себе полную характеристику жизни: «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне ее».
Современная наука полностью доказала это положение. В популярной литературе клетку часто называют «атомом жизни», «квантом жизни», подчеркивая тем самым, что клетка – это наименьшая единица живого, вне которой нет жизни.
Такая общая характеристика клетки должна в свою очередь опираться на определение живого – что такое живое, что такое жизнь . Очень трудно дать окончательное определение живого, жизни.
М.В. Волькенштейн дает следующее определение жизни: «живые организмы представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, важнейшими функционирующими веществами которых являются белки и нуклеиновые кислоты». Живому свойствен ряд совокупных признаков, таких, как способность к воспроизведению, использование и трансформация энергии, метаболизм , чувствительность, изменчивость. И такую совокупность этих признаков можно обнаружить на клеточном уровне. Нет меньшей единицы живого, чем клетка. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и убедиться, что многие из них обладают специфическими функциональными особенностями. Так, выделенные актомиозиновые фибриллы могут сокращаться в ответ на добавление АТФ; вне клетки прекрасно «работают» многие ферменты , участвующие в синтезе или распаде сложных биоорганических молекул; выделенные рибосомы в присутствии необходимых факторов могут синтезировать белок, разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т.д. Можно ли считать все эти клеточные компоненты, структуры, ферменты, молекулы живыми? Можно ли считать живым актомиозиновый комплекс? Думается, что нет, хотя бы потому, что он обладает лишь частью набора свойств живого. То же относится и к остальным примерам. Только клетка как таковая является наименьшей единицей, обладающей всеми вместе взятыми свойствами, отвечающими определению «живое».
Что же такое клетка, какое ей можно дать общее определение? Из школьного курса известно, что разнообразные клетки имеют совершенно несходную морфологию, их внешний вид и величины значительно расходятся. Действительно, что общего между звездчатой формой некоторых нервных клеток, шаровидной формой лейкоцита и трубкообразной формой клетки эндотелия. Такое же разнообразие форм встречается и среди микроорганизмов . Поэтому мы должны находить общность живых объектов не в их внешней форме, а в общности их внутренней организации.
Среди живых организмов встречаются два типа организации клеток. К наиболее простому типу строения можно отнести клетки бактерий и синезеленых водорослей , к более высокоорганизованному – клетки всех остальных живых существ, начиная от низших растений и кончая человеком.
Принято называть клетки бактерий и синезеленых водорослей прокариотическими, а клетки всех остальных представителей живого – эукариотическими, потому что у последних обязательной структурой служит клеточное ядро , отделенное от цитоплазмы ядерной оболочкой.
Содержимое прокариотической клетки одето плазматической мембраной, играющей роль активного барьера между собственно цитоплазмой клетки и внешней средой. Обычно снаружи от плазматической мембраны расположена клеточная стенка или оболочка – продукт клеточной активности. У прокариотических клеток нет морфологически выраженного ядра, но присутствует в виде так называемого нуклеоида зона, заполненная ДНК.
В основном веществе цитоплазмы прокариотических клеток располагаются многочисленные рибосомы , цитоплазматические же мембраны обычно выражены не так сильно, как у эукариотических клеток, хотя некоторые виды бактерий богаты внутриклеточными мембранными системами. Очень сильно цитоплазматические мембраны развиты у синезеленых водорослей. Обычно все внутриклеточные мембранные системы прокариот развиваются за счет плазматической мембраны.

Но не только присутствие морфологически – выраженного ядра является отличительным признаком эукариотических клеток. У клеток высшего типа кроме ядра в цитоплазме существует целый набор специальных обязательных структур, органелл, выполняющих отдельные специфические функции . К числу органелл относят мембранные структуры: систему эндоплазматической сети, аппарат Гольджи , лизосомы , митохондрии, пластиды. Кроме того , для эукариотических клеток характерно наличие мембранных структур, таких как микротрубочки, микрофиламенты, центриоли и др.

Эукариотические клетки обычно намного крупнее прокариотических. Так, палочковидные бактерии имеют длину до 5 мкм, а толщину около 1 мкм, в то время как эукариотические клетки в поперечнике могут достигать десятков мкм.
Несмотря на четкие морфологические отличия, и прокариотические и эукариотические клетки имеют много общего, что и позволяет отнести их к одной, клеточной, системе организации живого. И те и другие одеты плазматической мембраной, обладающей сходной функцией активного переноса веществ из клетки и внутрь ее; синтез белка у них происходит на рибосомах ; сходны и другие процессы , такие, как синтез РНК и репликация ДНК , похожи и биоэнергетические процессы. Исходя из вышесказанного клетке можно дать общее определение. Клетка – это ограниченная активной мембраной, упорядоченная структурированная система биополимеров и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов , осуществляющих поддержание и воспроизведение всей системы в целом.
Короче: клетка – самоподдерживающаяся и самовоспроизводящаяся система биополимеров. Это определение дает описание основных свойств «живого» – воспроизведение подобного себе из неподобного себе.
У многоклеточных организмов часть клеток утрачивает свойство размножаться, но они остаются клетками до тех пор, пока способны вести синтетические процессы, регулировать транспорт веществ межу клеткой и средой, использовать для этих процессов энергию. Есть примеры безъядерных клеток, это скорее не собственно клетки, а их остатки – одетые мембраной участки цитоплазмы с ограниченными функциональными потенциями.
Одно время первый постулат клеточной теории подвергался многочисленным нападкам и критике. Некоторые авторы указывали, что в многоклеточных организмах, особенно у животных, кроме клеток существуют и межклеточные, промежуточные вещества, которые тоже, казалось обладали свойствами живого. Однако было показано, что межклеточные вещества представляют собой не самостоятельные образования, а продукты активности отдельных групп клеток.
Другие возражения касались того, что часто у животных кроме отдельных клеток встречаются так называемые симпласты и синцитии, а у растительных клеток – плазмодии. По морфологическому описанию – это крупные цитоплазматические образования со множеством ядер, не разделенные на отдельные клеточные территории. Примерами таких симпластов могут быть мышечные волокна позвоночных или эпидермис у ленточных червей, а также плазмодии у низших грибов миксомицетов. Однако если проследить за развитием таких «неклеточных» форм, то легко убедиться в том, что они возникают вторично за счет слияния отдельных клеток или же в результате деления одних ядер без разделения цитоплазмы, т.е. без цитотомии.
2. Клетка – единая система сопряженных функциональных единиц
В начале нашего изложения в согласии с клеточной теорией мы обсуждали первый ее постулат: клетка – наименьшая единица живого. Однако мы знаем о сложности строения этой «единицы», которая состоит, содержит в себе множество типов внутриклеточных структур, выполняющих разнообразные функции. При этом каждый компонент «специализирован» на выполнение одной собственной группы функций, и другие компоненты не могут работать «по совместительству», не могут принять на себя основные функции других внутриклеточных структур. Важно отметить, что каждая из функций является обязательной, без выполнения которой клетка не может существовать. Все это в значительной степени напоминает многоклеточный организм, который также является особой живой системой, обеспечивающей свое собственное существование и воспроизведение. Все тело организма может быть подразделено на ряд подсистем или систем, обеспечивающих отправление целого ряда организменных функций: пищеварительная, выделительная, мышечная, нервная, половая система и др. И эти функции выполняются отдельными или рядом органов: кишечник, почки , мозг и т.д. И в данном примере эти системы в основном монофункциональны и незаменимы. В общей системе организма как целого, все они играют главные, а не подчиненные роли. Жизнь организма становится невозможной при выключении любой из этих систем.
Формально любую клетку можно «разложить» на ряд как бы независимых структурных и функциональных компонентов, выполняющих свои специфические функции. Так, например, эукариотические клетки принято разделять на ядра и цитоплазму. В цитоплазме, в свою очередь выделяют гиалоплазму или основную плазму клетки, а также целый ряд структур – органелл, выполняющих свои отдельные специфические функции. Это мембранные органеллы: одномембранные и двумембранные. К немембранным органеллам нужно отнести рибосомы и систему цитоскелетных фибрилл. Кроме того вся поверхность клетки покрыта цитоплазматической мембраной, тесно функционально связанной как с вакуолярной системой, с элементами цитоскелета, так и с гиалоплазмой.
Но каждая из этих морфологических «отдельностей» представляет собой новую систему или подсистему функционирования. Так клеточное ядро является системой хранения, воспроизведения и реализации генетической информации. Гиалоплазма – система основного промежуточного обмена; рибосомы – элементарные клеточные машины синтеза белка; цитоскелет опорно-двигательная система клетка; вакуолярная система – система синтеза и внутриклеточного транспорта белковых биополимеров и генезиса многих клеточных мембран; митохондрии – органеллы энергообеспечения клетки за счет синтеза АТФ, пластиды растительных клеток – система синтеза АТФ и фотосинтеза , плазматическая мембрана – барьерно-рецепторно-транспортная система клетки.
Аналоги этих систем есть и у прокариот: это – плазматическая мембрана, которая кроме пограничной роли участвует в процессах синтеза АТФ и фотосинтеза, цитозоль, рибосомы, и даже элементы цитоскелета.
Важно подчеркнуть, что все эти подсистемы клетки образуют некое сопряженное единство , находятся во взаимозависимости. Так, например, нарушение функций ядра сразу сказывается на синтезе клеточных белков, нарушение работы митохондрий прекращает все синтетические и обменные процессы в клетке, разрушение элементов цитоскелета прекращает внутриклеточный транспорт и т.д. Как в часовом механизме повреждение любой его части приводит к остановке всей системы в целом.
3. Гомологичность клеток
Термин гомологичность означает сходство по коренным свойствам и отличие по второстепенным. Так, например, руки человека , крыло птицы, передняя нога лошади гомологичны, сходны не только по плану строения, но и по своему происхождению. Подобно этому можно говорить, что разные клетки организмов растительного или животного происхождения сходны, гомологичны.
Это обобщение, сделанное еще Т. Шванном, нашло свое подтверждение и развитие в современной цитологии, использующей новые достижения техники, такие, как электронный микроскоп . Гомологичность строения клеток наблюдается внутри каждого из типов клеток: прокариотическом и эукариотическом. Хорошо известно разнообразие клеток как бактериальных, так и высших организмов. Такое одновременное сходство строения и разнообразие форм определяются тем, что клеточные функции можно грубо подразделить на две группы: обязательные и факультативные . Обязательные функции, направленные на поддержание жизнеспособности своих клеток, осуществляются специальными внутриклеточными структурами.
Так, у всех прокариотических клеток плазматическая мембрана не только ограничивает собственно цитоплазму, но и функционирует как структура, обеспечивающая активный транспорт веществ и клеточных продуктов, как система окислительного фосфорилирования, как источник образования клеточных бактериальных стенок. ДНК нуклеоида бактерий и синезеленых водорослей обеспечивает генетические свойства клеток и т.д. Рибосомы цитоплазмы – единственные аппараты синтеза полипептидных цепей, - также обязательный компонент цитоплазмы прокариотической клетки. Разнообразие же прокариотических клеток – это результат приспособленности отдельных бактериальных одноклеточных организмов к условиям среды обитания. Прокариотические клетки могут отличаться друг от друга толщиной и устройством клеточной стенки,складчатостью плазматической мембраны, количеством и структурой цитоплазматических выростов этой мембраны, количеством и свойствами внутриклеточных вакуолей и мембранных скоплений и др. Но «общий план» строения прокариотических клеток остается постоянным.
Та же картина наблюдается и для эукариотических клеток. При изучении клеток растений и животных бросается в глаза разительное сходство не только в микроскопическом строении этих клеток, но и в деталях строения их отдельных компонентов. У эукариот так же, как у прокариот, клетки отделены друг от друга или от внешней среды активной плазматической мембраной, которая может принимать участие в выделении веществ из клетки и построении внеклеточных структур, что особенно выражено у растений. У всех эукариотических клеток от низших грибов до позвоночных всегда имеется ядро., принципиально сходное по построению у разных организмов. Строение и функции внутриклеточных структур также в принципе определяется гомологичностью общеклеточных функций, связанных с поддержанием самой живой системы.
Одновременно мы видим и разнообразие клеток даже в пределах одного многоклеточного организма. Так, например, по форме мало похожи друг на друга такие клетки, как мышечная или нервная. Современная цитология показывает, что различие клеток связано со специализацией их функций, с развитием особых функциональных клеточных аппаратов. Так, если рассматривать мышечную клетку, то в ней кроме общеклеточных структур встречаются в большом количестве фибриллярные компоненты, обеспечивающие специальную функциональную нагрузку, характерную для этой клетки.
В нервной клетке кроме общеклеточных компонентов можно отметить специфические черты: наличие длинных и разветвленных клеточных отростков, оканчивающихся специальными структурами передачи нервного импульса; своеобразную композицию в цитоплазме из элементов эндоплазматической сети, большое количество микротрубочек в клеточных отростках. Вся совокупность этих отличительных черт нервной клетки связана с ее специализацией – передачей нервного импульса. Однако и микротрубочки и микрофиламенты можно обнаружить практически в любых эукариотических клетках , хотя они будут и не так обильны. Например, филаменты, сходные по химизму с актиновыми фибриллами мышечных клеток, имеются в цитоплазме фибробластов. В ней же обнаруживаются и микротрубочки. Следовательно, и микрофиламенты и микротрубочки представляют собой обязательные общеклеточные структуры. Сейчас известно, что микрофиламенты клеток представлены актином, что указывает на их общеклеточное значение – обеспечивать подвижность клеток. В мышечных клетках эта функция стала главной, поэтому так сильно в них выражен сократительный аппарат.
Структурное разнообразие клеток многоклеточного организма можно объяснить отличием их специальных функций, осуществляющихся данной клеткой как бы на фоне общих, обязательных клеточных функций.
Другими словами, гомологичность в строении клеток определяется сходством общеклеточных функций, направленных на поддержание жизни самих клеток и на их размножение . Разнообразие же в строении клеток многоклеточных – результат функциональной специализации.
4. Клетка от клетки
Формулировка положения «Всякая клетка от клетки» связана с именем знаменитого ученого Р. Вирхова. Т. Шванн в своих обобщениях подчеркивал одинаковость принципа развития клеток как у животных, так и у растений. Это представление базировалось на выводах Шлейдена о том, что клетки могут образовываться из зернистой массы в недрах клеток заново. Р. Вирхов как противник идеи о самозарождении жизни настаивал на «преемственном размножении клеток». Сегодня сформулированное Р. Вирховым афористическое определение можно считать биологическим законом. Размножение клеток прокариотических и эукариотических происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала .
У эукариотических клеток единственно полноценным способом деления является митоз. При этом образуется специальный аппарат клеточного деления – клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяются хромосомы , до этого удвоившиеся в числе. Этот тип деления наблюдается у всех эукариотических, как растительных, так и животных клеток.
Прокариотические клетки, делящиеся так называемым бинарным образом, также используют специальный аппарат разделения клеток, значительно напоминающий митотический способ деления эукариот.
Современная наука отвергает иные пути образования клеток и увеличение их числа. Появившиеся одно время описания образования клеток из «неклеточного живого вещества» оказались в лучшем случае результатом методических недостатков или даже ошибок, а в худшем – плодом научной недобросовестности.
Одно время считали, что клетки могут размножаться прямым делением, путем так называемого амитоза . Однако прямое разделение клеточного ядра, а затем и цитоплазмы, наблюдается только у некоторых инфузорий. При этом амитотически делится только макронуклеус, в то время как генеративные микронуклеусы делятся исключительно путем митоза, вслед за которым наступает разделение клетки – цитотомия. Часто появление дву- или многоядерных клеток также считали результатом амитотического деления ядер. Однако появление многоядерных клеток является или результатом слияния друг с другом нескольких клеток или результатом нарушения самого процесса цитотомии.
5. Клетки и многоклеточный организм
Роль отдельных клеток во многоклеточном организме подвергалась неоднократному обсуждению и критике и претерпела наибольшие изменения. Т. Шванн представлял себе многогранную деятельность организма как сумму жизнедеятельности отдельных клеток. Это представление было в свое время принято и расширено Р. Вирховым и получило название теории «клеточного государства». Вирхов писал: «…всякое тело, сколько-нибудь значительного объема, представляет устройство, подобное общественному, где множество отдельных существований поставлено в зависимость друг от друга, но так, однако же, что каждое из них имеет свою собственную деятельность, и если побуждение к этой деятельности оно и получает от других частей, зато самою работу свою оно совершает собственными силами».
Действительно, какую бы сторону деятельности целого организма мы ни брали, будь то реакция на раздражение или движение , иммунные реакции, выделение и многое другое, каждая из них осуществляется специализированными клетками. Клетка – это единица функционирования в многоклеточном организме. Но клетки объединены в функциональные системы, в ткани и органы, которые находятся во взаимной связи друг с другом. Поэтому нет смысла в сложных организмах искать главные органы или главные клетки. Многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом. Специализация частей многоклеточного единого организма, расчлененность его функций дают ему большие возможности приспособления для размножения отдельных индивидуумов, для сохранения вида.
В конечном итоге можно сказать, что клетка в многоклеточном организме – это единица функционирования и развития. Кроме того, первоосновой всех нормальных и патологических реакций целостного организма является клетка. Действительно, все многочисленные свойства и функции организма выполняются клетками. Когда в организм попадают чужеродные белки, например бактериальные, то развивается иммунологическая реакция. При этом в крови появляются белки-антитела, которые связываются с чужими белками и их инактивируют. Эти антитела – продукты синтетической активности определенных клеток, плазмацитов. Но, чтобы плазмациты начали вырабатывать специфические антитела, необходима работа и взаимодействие целого ряда специализированных клеток-лимфоцитов и макрофагов. Другой пример, простейший рефлекс – слюноотделение в ответ на предъявление пищи. Здесь проявляется очень сложная цепь клеточных функций: зрительные анализаторы передают сигнал в кору головного мозга, где активируется целый ряд клеток, передающих сигналы на нейроны, которые посылают сигналы к разным клеткам слюнной железы, где одни вырабатывают белковый секрет, другие выделяют слизистый секрет, третьи, мышечные, сокращаясь, выдавливают секрет в протоки, а затем в полость рта. Такие цепи последовательных функциональных актов отдельных групп клеток можно проследить на множестве примеров функциональных отправлений организма.
Жизнь нового организма начинается с зиготы – клетки, получившейся в результате слияния женской половой клетки со спермием . При делении зиготы возникает клеточное потомство, которое также делится, увеличивается в числе и приобретает новые свойства, специализируется, дифференцируется. Рост организма, увеличение его массы есть результат размножения клеток и результат выработки ими разнообразных продуктов.
И наконец, именно поражение клеток или изменение их свойств является основой для развития всех без исключения заболеваний. Данное положение было впервые сформулировано Р. Вирховым в его знаменитой книге «Клеточная патология». Классическим примером клеточной обусловленности развития болезни может служить сахарный диабет , широко распространенное заболевание современности . Его причина – недостаточность функционирования лишь одной группы клеток, так называемых В-клеток островков Лангерганса в поджелудочной железе. Эти клетки вырабатывают гормон инсулин , участвующий в регуляции сахарного обмена организма.
Все эти примеры показывают важность изучения структуры, свойств и функций клеток для самых различных биологических дисциплин и для медицины.
6. Тотипотентность клеток
Как же возникают разнообразные типы клеток в многоклеточных организмах? Известно, что организм человека , развившийся всего из одной исходной клетки, зиготы, содержит более 200 различных типов клеток. Каким образом возникает это разнообразие, сегодня до конца не ясно, так как еще мало конкретных данных, касающихся путей появления тех или иных клеточных типов.
Современная биология на базе представлений эмбриологии, молекулярной биологии и генетики считает, что индивидуальное развитие от одной клетки до многоклеточного зрелого организма – результат последовательного, избирательного включения работы разных генных участков хромосом в различных клетках. Это приводит к появлению клеток со специфическими для них структурами и особыми функциями , т.е. к процессу , называемому дифференцировкой .
Дифференцировка – это результат избирательной активности разных генов в клетках по мере развития многоклеточного организма. Другими словами, дифференцировка – это результат дифференциальной активности генов. Следовательно, можно утверждать, что любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала, всеми возможными потенциями для проявления этого материала, т.е. все – или тотипотентна, но в разных клетках одни и те же гены могут находиться или в активном или в репрессированном состоянии. Эти представления базируются на большом экспериментальном материале. Стало возможным вырастить зрелое растение из одной его соматической клетки. Многочисленные опыты на лягушках показали, что ядра дифференцированных клеток сохраняют все те потенции, которые есть у ядра в зиготе.
Было найдено, что если после оплодотворения яйцеклетки лягушки у возникшей зиготы микрохирургически удалить ядро, а на место его имплантировать ядро из другой зиготы, то произойдет полное развитие нормальной лягушки. Если же в этом эксперименте ядро зиготы заменить на ядро из специализированной клетки взрослого животного, то развитие эмбриона пройдет нормальным путем, вплоть до появления взрослой лягушки.
Аналогичным путем можно в безъядерную зиготу млекопитающих ввести ядро из ткани взрослого животного и получить клонированную особь, имеющую идентичную генетическую информацию с животным-донором. Так была получена овечка Долли.
Из этого вытекает, что клетки многоклеточных организмов обладают полным набором генетической информации, свойственной для данного организма, в этом отношении они равнозначны. Но одновременно клетки отличаются по объему проявления этой информации, что и создает возможность появления специализированных клеток. Однако эти представления не могут быть приняты полностью, так как имеются исключения, показывающие, что при дифференцировке происходит количественное изменение генетического материала. Так, при дроблении яиц аскариды клетки, дающие начало соматическим тканям, теряют часть хромосомного материала. Сходный процесс описан у насекомых-галлин. В этом случае при обособлении соматических ядер происходит значительная редукция хромосомного материала. При этом клетки половых зачатков содержат 40 хромосом, а соматические – всего 8. Следует помнить, что такие различия были обнаружены только между половыми и соматическими клетками; различий в хромосомных наборах между разными соматическими клетками не обнаружено. Однако в последнее время появились данные о том, что плазмациты, в результате специфической дифференцировки при иммунном ответе претерпевают молекулярные перестройки в области генов, ответственных за синтез антител, и тем самым генетически отличаются от остальных клеток.
Общим же законом для многоклеточных растительных и животных организмов является то, что несмотря на структурные и функциональные различия клеток данного организма в генетическом отношении они однородны, тождественны и тотипотентны.
Подводя итог, нужно сказать, что именно клетка является единицей развития многоклеточных, единицей их строения, единицей функционирования и единицей патологических изменений организма.
Для того, чтобы понять не только значение структурных особенностей клетки, но и, главное, разобраться в функциональных отправлениях ее отдельных компонентов и всей клетки в целом, чтобы сочетать изучение морфологии клетки с главнейшими биохимическими и генетическими особенностями ее устройства и работы, чтобы изучать клетку именно с позиций современной клеточной биологии, необходимо хотя бы вкратце вспомнить основные молекулярно-биологические закономерности, еще раз кратко обратиться к содержанию центральной догмы молекулярной биологии.

1. Основные положения клеточной теории. Вклад Пуркине, Шванна, Вихрова и др. в учение о клетке. Определение клетки. Биологические мембраны клетки, их строение, химический состав и функции.

Клеточная теория - это обобщенное представление о строении клеток как единиц живого, об их воспроизведении и роли е формировании многоклеточных организмов. Прогресс в изучении морфологии клетки связан с успехами микроскопирования в XIX в, когда были описаны ядро и протоплазма (Я. Пуркинье, Р. Броун и др. Заслуга Т.Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он оценил их значение как основного структурного компонента организма. Дальнейшее развитие и обобщение эти представле-ния получили в работах немецкого патолога Р. Вирхова (1858). Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. К клеточным мембранам относятся: плазмолемма, кариолемма, мембраны метохондрий, эндоплазмотические сети, аппарат Гольджи, лизосомы, пероксисом. Общей чертой всех мембран клетки является то, что они представляют собой тонкие пласты липопротеидной природы (липиды с белками). Особенность липидов – разделение молекул на две части 1) гидрофобные не полярные, 2) гидрофильные. Мембраны различаются набором белковых молекул: 1 – часть, богатые полярными аминокислотами, 2 – часть обогащенные неполярными аминокислотам,

2. Основные положения клеточной теории. Определение клетки. Плазмолемма: строение, химический состав, функции. Структурно – функциональная характеристика различных видов межклеточного соединения.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Плазмолемма (plasmalemma), или внешняя клеточная мембрана, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а, следовательно, и со всеми веществами и стимулами, воздействующими на клетку. Основу плазмолеммы составляет липопротеиновый комплекс. Снаружи от плазмолеммы располагается надмембранный слой - гликокаликс – в составе, которого углеводы. Они образуют длинные цепочки полисахаридов, связанные с белками и липидами. Мембрана выполняет ряд важных функций: разграничение цитоплазмы с внешней средой, рецепции и транспорта разных веществ внутрь клетки и изнутри её. Межклеточные соединения. Их делят на простые и сложные. Сложные бывают запирающие, сцепляющие и коммуникационные контакты. К запирающим относятся плотные контакты. К сцепляющим относятся адгезивный поясок и десмосомы.

3. Основные положения клеточной теории. Определение клетки. Плазмолемма: строение, химический состав, функции. Специальные структуры на свободной поверхности клеток, их строение и значение.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Плазмолемма (plasmalemma), или внешняя клеточная мембрана, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а, следовательно, и со всеми веществами и стимулами, воздействующими на клетку. Основу плазмолеммы составляет липопротеиновый комплекс. Снаружи от плазмолеммы располагается надмембранный слой - гликокаликс – в составе, которого углеводы. Они образуют длинные цепочки полисахаридов, связанные с белками и липидами. Мембрана выполняет ряд важных функций: разграничение цитоплазмы с внешней средой, рецепции и транспорта разных веществ внутрь клетки и изнутри её. Плазмолемма многих клеток может образовывать выросты различной структуры. Они включат в свой состав специальные компоненты цитоплазмы (микротрубочки, фибриллы). Это приводит к развитию мембранных органелл – ресничек и жгутиков. Часто встречаются микроворсинки – выросты цитоплазмы. Они характерны для клеток эпителия.

5. Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, участвующих во внутриклеточном пищеварении, защитных и обезвреживающих реакциях.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга-неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран-ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ-ные филаменты). Цитоплазматическая сеть – это компонент цитоплазмы, состоящий из совокупностей вакуолей, плоских мембранных мешков или трубчатых образований создающих мембранную сеть внутри цитоплазмы. Выделяют два типа – зернистую и не зернистую эндоплазматическую сеть. Зернистая сеть – это замкнутые мембраны из цистерн и трубочек. Гладкая эндоплазматическая сет, возникает на основе зернистой сети. Её деятельность связана с метаболизмом липидов и полисахаридов. Также, выведению вредных веществ из организма. Пероксисомы – содержат гранулярный матрикс. Каталаза пероксисом играет важную защитную роль, т.к. H 2 O 2 является токсическим веществом для клетки.

6. Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, участвующие в процессах выведения веществ из клеток.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга-неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран-ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ-ные филаменты). Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). Здесь внутриклеточные продукты, заключенные в вакуоли проходят к плазмолемме. Этот процесс осуществляется при участии системы фибриллярных компонентов цитоплазмы, микротрубочки и сократимые микрофиламенты. Грануляционная эндоплазматическая сеть, участвует в синтезе белков выводимых из клетки (экспортируемые белки). Пероксисомы – содержат гранулярный матрикс. Каталаза пероксисом играет важную защитную роль, т.к. H 2 O 2 является токсическим веществом для клетки.

7. Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, участвующие в энергопроизводстве.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга-неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран-ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ-ные филаменты). Митохондрии – органеллы синтеза АТФ. Функция: окисление органических соединений и использование освобождающейся при распаде этих соединений энергии для синтеза молекулы АТФ. Митохондрии ограничены двумя мембранами. Наружная мембрана отделяет от гиалоплазмы, внутренняя мембрана ограничивает собственно внутреннее содержимое митохондрий – матрикс. Внутренняя мембрана образовывает выпячивание – гребни. В матриксе находится автономная система митохондриального белкового синтеза.

4. Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, участвующих в биосинтезе веществ в клетках.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга-неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран-ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ-ные филаменты). Рибосомы – элементарные аппараты синтеза белковых и полипептидных молекул. Это сложные рибонуклеопротеиды, в состав которых входят белки и молекулы рибосомальных РНК.

Митохондрии – органеллы синтеза АТФ, это энергетическая станция клетки (дыхание), окисление органических соединений.

8. Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, составляющих цитоскелет клеток. Строение и значение центриолей, ресничек и жгутиков.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга-неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран-ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ-ные филаменты). Цитоскелет - опорно-двигательная система клетки, включающая не-мембранные белковые нитчатые образования, выполняющие как каркас-ную, так и двигательную функции в клетке. К этой системе отно-сятся фибриллярные структуры и микротрубочки. К фибриллярным компонентам относятся микрофиламен-ты, промежуточные филаменты, или микрофибриллы. В состав микрофиламентов кортикального слоя и пучков входят сократитель-ные белки: актин, миозин, тропомиозин, L – актинин. Центриоль – центр роста микротрубочек аксонемы ресничек или жгутиков. Она сама индуцирует полимеризацию тубулина при образовании микротрубочек в интерфазе. Перед митозом она является одним из центров полимеризации микротрубочек веретена клеточного деления. Реснички и жгутики – это специальные органеллы движения. Реснички – это тонкий цилиндрический вырост цитоплазмы. Благодаря ресничкам и жгутикам, свободная клетка способна двигаться. Неподвижные клетки движением ресничек могут перемещать жидкость.

9. Основные положения клеточной теории. Вклад Пуркине, Шванна, Вихрова и др. в учение о клетке. Определение клетки. Включение цитоплазмы: понятие и классификация; химическая и морфофункциональная характеристика.

Клеточная теория - это обобщенное представление о строении клеток как единиц живого, об их воспроизведении и роли е формировании многоклеточных организмов. Прогресс в изучении морфологии клетки связан с успехами микроскопирования в XIX в, когда были описаны ядро и протоплазма (Я. Пуркинье, Р. Броун и др. Заслуга Т.Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он оценил их значение как основного структурного компонента организма. Дальнейшее развитие и обобщение эти представле-ния получили в работах немецкого патолога Р. Вирхова (1858). Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Включения цитоплазмы - необязательные компоненты клетки, возникающие и исчезающие в зависимости от метабо-лического состояния клеток. Различают включения трофические, секреторные, экскретор-ные и пигментные. К трофическим включениям относятся капельки нейтральных жиров, которые могут накапливаться в гиалоплазме. В случае недостатка субстратов для жизнедеятельности клетки эти капельки могут резорбироваться. Есть: Секреторные включения, экскреторные включения, пигментные включения.

10. Основные положения клеточной теории. Определение клетки. Ядро: функции, строение, химический состав. Взаимодействие структур ядра и цитоплазмы в процессе синтеза белка в клетках.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Ядро клетки – структура, обеспечивающая генетическую детерминацию и регуляцию белкового синтеза. Функции: 1) Хранит и передает генетическую информацию. 2) Реализизация и обеспечение синтеза белка. Ядро – это вместилище генетического материала, где он функционирует и производится. Ядро состоит из хроматина, ядрышка и других продуктов синтетической активности (перихроматиновые гранулы, и фибриллы, интерхроматиновые гранулы) ядерного белкового остова (матрикс), кариоплазма и ядерной оболочки, отделяющей ядро и цитоплазмы.

11. Основные положения клеточной теории. Определение клетки. Репродукция клеток и клеточных структур: способы репродукций, их структурная характеристика, значение для жизнедеятельности организма.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Один из постулатов клеточной теории гласит, что увеличение числа клеток, их размножение происходят путем деления исходной клетки. Время существования клетки как таковой, от деления до деле-ния или от деления до смерти, обычно называют клеточным циклом. Организмы имеют неодинаковую способность к делению. Встречаются попу-ляции клеток, полностью потерявшие свойство делиться. Это большей час-тью специализированные, дифференцированные клетки. В организме есть постоянно обновляющиеся тка-ни - различные эпителии, кроветворные ткани. Многие клетки, не размножающиеся в обычных условиях, приобретают вновь это свойство при процессах репаративной регенерации органов и тка-ней. Размножающиеся клетки обладают разным количеством ДНК в зави-симости от стадии клеточного цикла. Это наблюдается при размножении как соматических, так и половых клеток.

12. Основные положения клеточной теории. Определение клетки. Понятие о жизненном цикле клеток: его этапы и их морфофункциональная характеристика. Особенности жизненного цикла у различных видов клеток.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Время существования клетки как таковой, от деления до деле-ния или от деления до смерти, обычно называют клеточным циклом. Весь клеточный цикл состоит из 4 отрезков времени: собственно мито-за (М), ресинтетического (G,), синтетического (S) и постсинтетического (G,) периодов интерфазы. В G периоде, клетки имеют диплоидное содержание ДНК на одно ядро, начинается рост клеток, и подготовка клетки к синтезу ДНК. В следующем, периоде происходит удвоение количества ДНК на ядро и соответственно удваивается число хромосом. Уровень синтеза РНК возрастает соответственно увеличе-нию количества ДНК, достигая своего максимума в G2-периоде. В конце G2-периода или в митозе по мере конденсации митотических хромосом синтез РНК резко падает и полностью прекращается во время митоза.

13. Основные положения клеточной теории. Определение клетки. Неклеточные структуры организма (симпласты, синцитии, межклеточное вещество), их морфофункциональная характеристика. Взаимоотношение клеток и неклеточных структур.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе-нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле-ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ-ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. У животных организмов, отдельных клеток, встречаются некле-точные структуры - так называемые симпласты, синцитии и межклеточ-ное вещество. Симпласты - это крупные образования, состоящие из ци-топлазмы (протоплазмы) с множеством ядер и мышечные волокна позвоночных, наружный слой трофобдаста пла-центы и др. Они возникают вторично в результате слияния отдельных кле-ток или же при делении одних ядер без разделения цитоплазмы. Среди неклеточных структур различают еще межклеточное вещество – состоит из коллагеновых и эластических волокон, а также из основного аморфного вещества. Межклеточное вещество образуется путем секреции, из плазмы крови, поступающей в межклеточное пространство, оно обновляется в течение жизни.

14-15. Уровни организации живого. Определение ткани.

Организм человека и животных представляет собой целостную систе-му, в которой можно выделить ряд иерархических уровней организации живой материи: клетки - ткани - морфофункциональные единицы орга-нов - органы - системы органов. Каждый уровень структурной организа-ции имеет морфофункциональные особенности, отличающие его от других уровней. Тканям присущи общебиологические закономерности, свойственные живой материи, и вместе с тем собственные особенности строения, разви-тия, жизнедеятельности, внутри тканевые (внутриуровневые) и межткане-вые (межуровневые) связи. Они служат элементами развития, строения и жизнедеятельности органов и их морфофункциональных единиц. Ткани представляют собой систему клеток и неклеточных структур, объединившихся и специализировавшихся в процессе эволюции для выпол-нения важнейших функций в организме. Для каждой из 5 основных ткане-вых систем (нервная ткань, мышечная ткань, эпителиальная ткань, соеди-нительная ткань, кровь) характерны присущие именно им особенности строения, развития и жизнедеятельности. Уровни: 1) молекулярный - уровень организации коллагенового волокна. 2) Надмолекулярный уровень – внеклеточной организации коллагенового волокна. 3) Фибриллярный – уровень организации коллагенового волокна. 4) Волоконный. Клеточные производные: 1) Симпласты (мышечные волокна, наружная часть трофобласты), 2)Межклеточное вещество (представлено золем, гелем, или бить минерализованным), находятся эритроциты, тромбоциты и т.д. Классификация - 4 морфофункциональные группы: эпителии, ткани внутренней среды (кровь, лимфа, соединительная ткань), Мышечные, нейральные. Ведущими элементами тканевой системы являются клетки, и различные клеточные производные, межклеточное вещество. Н.Г. Хлопин ввел понятие о генетических тканевых типах, сформулировал концепцию дивергентного развития. А.А. Заварзин – причинные аспекты развития тканей раскрыл в теории параллелизмов. Вывод: сходные тканевые структуры возникли параллельно в ходе дивергентного развития.

16. Морфофункциональная характеристика эпителиальных тканей. Источники их развития. Классификация. Вклад Хлопина в изучение эпителиальных клеток, поляризация, специальные органеллы, межклеточные соединения. Строение и роль базальной мембраны.

Эпителиальные ткани - это совокупность дифферонов полярно диф-ференцированных клеток, тесно расположенных в виде пласта на базальной мембране, на границе с внешней или внутренней средой, а также об-разующих большинство желез организма. Различают поверхностные (покров-ные и выстилающие) и железистые эпителии. Классификация: Признаки: происхождение, строение функции. 1) Эпителии: однослойные и многослойные. В однослойных эпителиях все клетки связаны с базальной мембраной, в многослойных лишь один слой. 2) В соответствии с формой клеток: кубические и призматические. A) Однослойный эпителий: однорядный, многорядный. Б) Многослойный эпителий: ороговевающий, неороговевающий, переходный. В) Переходный эпителий. Н.Г. Хлопин создал онтофилогенетическую классификацию (Особенность развития эпителиев из тканевых зачатков). Она включает: эпидермальный (кожный), энтеродермальный (кишечный), целонефродермальный, ангеодермальный тип эпителия. Эпителий представляет собой пласты клеток – эпителиоцитов, которые имеют неодинаковую форму и строение в различных видах эпителия. Между клетками, составляющими пласт, нет межклеточного вещества. Клетки тесно связаны друг с другом, с помощью контактов: десмосом, щелевидными и плотными соединениями. Эпителии располагаются на базальных мембранах. Они образуются в результате деятельности клеток эпителия, и соединительной ткани. Эпителий не содержит кровеносных сосудов. Питание осуществляется диффузно через базальную мембрану. Эпителий обладает полярностью: базальные и апикальные отделы всего эпителиального пласта и соответствующих его клеток имеют разное строение.

17. Морфофункциональная характеристика покровного эпителия. Классификация. Многослойные эпителии: виды, источники, регенерация.

Поверхностные эпителии - это пограничные ткани, располагающиеся на поверхности тела (покровные), слизистых оболочках внутренних ор-ганов (желудка, кишечника, мочевого пузыря и др.) и вторичных полостей тела (выстилающие). Они отделяют организм и его органы от окружаю-щей их среды и участвуют в обмене веществ между ними, осуществляя фун-кции поглощения веществ (всасывание) и выделения продуктов обмена (экскреция). Покровный эпителий выполняет важную защитную функцию, предохраняя подлежащие ткани организма от различных внешних воздействий - химических, механических, инфекционных и др. Классификация. Эпителии: однослойные и многослойные. В однослойных эпителиях все клетки связаны с базальной мембраной, в многослойных лишь один слой. 2) В соответствии с формой клеток: кубические и призматические. A) Однослойный эпителий: однорядный, многорядный. Б) Многослойный эпителий: ороговевающий, неороговевающий, переходный. В) Переходный эпителий. Многослойный плоский неороговевающий эпителий. В нем различают три слоя: базальный (состоит из эпителиоцитов призматической формы, расположенных на базальной мембране), шиповатый слой (клетки неправильной многоугольной формы), плоский (поверхностный). Многослойный плоский ороговевающий эпителий – покрывает поверхность кожи, образуя её эпидермис. Здесь идет процесс ороговения. Основная часть клеток – кератиноциты. Переходный эпителий – типичен для мочевыводящих органов. В нем различают несколько слоев: базальный, промежуточный поверхностный. Эпителиальные клетки быстро изнашиваются и погибают. Источник развития – стволовые клетки эпителия.

18. Морфофункциональная характеристика. Покровного эпителия. Классификация. Однослойные эпителии: различные виды, источники их развития, строение, диффероны, кишечного эпителия. Физиологическая регенерация, локализация камбиальных клеток.

Поверхностные эпителии - это пограничные ткани, располагающиеся на поверхности тела (покровные), слизистых оболочках внутренних ор-ганов (желудка, кишечника, мочевого пузыря и др.) и вторичных полостей тела (выстилающие). Они отделяют организм и его органы от окружаю-щей их среды и участвуют в обмене веществ между ними, осуществляя фун-кции поглощения веществ (всасывание) и выделения продуктов обмена (экскреция). Покровный эпителий выполняет важную защитную функцию, предохраняя подлежащие ткани организма от различных внешних воздействий - химических, механических, инфекционных и др. Классификация. Эпителии: однослойные и многослойные. В однослойных эпителиях все клетки связаны с базальной мембраной, в многослойных лишь один слой. 2) В соответствии с формой клеток: кубические и призматические. A) Однослойный эпителий: однорядный, многорядный. Б) Многослойный эпителий: ороговевающий, неороговевающий, переходный. В) Переходный эпителий. Многослойный плоский неороговевающий эпителий. В нем различают три слоя: базальный (состоит из эпителиоцитов призматической формы, расположенных на базальной мембране), шиповатый слой (клетки неправильной многоугольной формы), плоский (поверхностный). Развивается из всех трех зародышевых листков, начиная с 3- ей четвертой недели эмбрионального развития. 1) Однослойный плоский эпителий представлен в организме мезотелием (эндотелий). Он покрывает серозные оболочки. Его клетки, мезотелиоциты, плоские, с неровными краями. Они содержат не одно, а два или три ядра. 2) Однослойный кубический эпителий. Его клетки имеют щеточную камеру и базальную изчерченность. 3) Однослойный призматический эпителий – характерен для среднего отдела пищеварительной системы. Его клетки связаны между собой с помощью десмосом, щелевых коммуникационных соединений по типу замка.

19. Морфофункциональная характеристика железистого эпителия. Источники их развития. Цитофизиологическая характеристика секреторного процесса. Типы секреции. Экзокринные железы: классификация, строение, регенерация.

Железистый эпителий, образующий многие железы, осуществляет секреторную функцию, т.е. синтезирует и выделяет специфические про-дукты - секреты, которые используются в процессах, протекающих в организме. Например, секрет поджелудочной железы участвует в переваривании белков, жиров и углеводов в тонкой кишке. Железистый эпителий состоит из железистых секреторных клеток – Гландулоцитов. Они осуществляют синтез и выделению секретов на поверхность кожи. Слизистых оболочек и полости рта. Гранулоциты лежат на базальной мембране. Ядра бывают обычно крупные, неправильной формы. У них хорошо развита гранулярная эндоплазматическая сеть. В клетках, синтезирующих небелковые секреты, выражена агранулярная эндоплазматическая сеть. В железистых клетках хорошо заметна полярная дифференцировка. Железы – органы, состоящие из секреторных клеток, вырабатывающие специфические вещества различной химической природы и выделяющие их выводные протоки – экзокринные железы. Они могут быть одноклеточными, и многоклеточными. Многоклеточные железы состоят из двух частей. Секреторных и выводных. Экзокринные железы: 1) Простые: разветвленные и неразветвленные (трубчатые и альвеолярные). 2) Сложные бывают: разветвленные и неразветвленные. А) Трубчатые, альвеолярные, и трубчато-альвеолярные. В железах проходит процесс физиологической регенерации (внутриклеточной или путем размножения).

20. Понятие о системе крови. Кровь как разновидность тканей внутренней среды. Форменные элементы крови и их количество. Эритроциты: размер, форма, строение, химический состав, функции, продолжительность жизни. Особенности строения и химического состава ретикулоцитов, их процентное содержание.

Система крови включает в себя кровь, органы кроветворения - крас-ный костный мозг, тимус, селезенку, лимфатические узлы, лимфоидную ткань некроветворных органов. Элементы системы крови имеют общее происхождение - из мезенхимы и структурно-функциональные особенности, подчиняются общим зако-нам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. Система крови тесно связана с лимфатической и иммунной системами. Образование иммуноцитов происходит в органах кроветворения, а их циркуляция и рециркуляция - в периферической крови и лимфе. Составные компоненты: плазма и взвешенный в ней форменные элементы. Все клетки крови развиваются из общей полипептидной стволовой клетки крови в эмбриогенезе, и после рождения. Кровь, является циркулирующей по кровеносным сосу-дам жидкой тканью, состоящей из двух основных компонентов, - плаз-мы и взвешенных в ней форменных элементов - эритроцитов, лейко-цитов и кровяных пластинок. К форменным элементам крови относятся эритроциты, лейкоциты и кровяные пластинки (тромбоциты). Ретикулоциты - безъядерные клетки, утратившие в процессе фило - и онтогенеза ядро и большинство органелл, неспособных к делению. Основная функция дыхательная, обеспечивается дыхательным пигментом – гемоглобином. Количество эритроцитов в норме 3,7 – 5,1 млн. мм3 (мкл). Продолжительность жизни эритроцитов составляет 120 дней. Эритроцит имеет двояковогнутую форму (дискоцит), плоская поверхность (планоцит), куполообразные, шаровидные, шиповидные. Размер эритроцитов: 7,5 мкм – нормоцит, микроциты (<7,5 мкм), макроциты (>7,5 мкм). Ретикулоциты – обязательная составная часть эритроцитов, их молодые формы. Или полихроматофильные эритроциты 1,5 %/. В них сохраняются рибосомы и эндоплазматическая сеть.

21. Понятие о системе крови. Форменные элементы крови и их количество. Кровяные пластинки (тромбоциты): размеры, строение, функция, продолжительность жизни.

Система крови включает в себя кровь, органы кроветворения - крас-ный костный мозг, тимус, селезенку, лимфатические узлы, лимфоидную ткань некроветворных органов. Элементы системы крови имеют общее происхождение - из мезенхимы и структурно-функциональные особенности, подчиняются общим зако-нам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. К форменным элементам крови относятся эритроциты, лейкоциты и кровяные пластинки (тромбоциты). Эритроциты 3,9 – 5,5 х 10 12/л – мужчины, женщины – 3,7 – 4,9 х 10 12/л, лейкоциты – 4-9х109/л. Тромбоциты – 2 – 4 х 10 9 /л. Тромбоциты, кровяные пластинки – в крови человека имеют вид мелких бесцветных телец, округлой овальной или веретенообразной формы размером 2-4 мкм. Имеют форму двояковыпуклого диска. Имеются две системы канальцев и трубочек. Основная функция тромбоцитов – участие в процессе свертывания крови (защитная реакция организма на повреждение). При повреждении стенки сосуда, пластинки быстро агрегируют.

22. Понятие о системе крови. Форменные элементы крови и их количество. Зернистые лейкоциты (гранулоциты), разновидность, строение, форма.

Система крови включает в себя кровь, органы кроветворения - крас-ный костный мозг, тимус, селезенку, лимфатические узлы, лимфоидную ткань некроветворных органов. Элементы системы крови имеют общее происхождение - из мезенхимы и структурно-функциональные особенности, подчиняются общим зако-нам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. К форменным элементам крови относятся эритроциты, лейкоциты и кровяные пластинки (тромбоциты). Эритроциты 3,9 – 5,5 х 10 12/л – мужчины, женщины – 3,7 – 4,9 х 10 12/л, лейкоциты – 4-9х109/л. Тромбоциты – 2 – 4 х 109/л. По морфологическим признакам и биологической роли лейкоци-ты подразделяют на две группы: зернистые лейкоциты, или грану-лоциты, и незернистые лейкоциты, или агранулоциты. К гранулоцитам относятся нейтрофильные, эозинофильные и базо-фильные лейкоциты. 1)Нейтрофильные гранулоциты 2,0-5,5 109/л крови. Среди нейтрофилов могут находиться в клетки различной степени зрелости: юные, палочкоядерные, сегментоядерные. Палочкоядерные составляют 1-6%, имеют несегментированное ядро, юные клетки не более 0,5%, специфические гранулы составляют 80-90% всех гранул. Основная функция нейтрофилов – фагоцитоз микроорганизмов, их называю макрофагами. Продолжительность жизни нейрофилов 5-9 суток. 2) Эозинофильные гранулоциты – количество – 0,02 – 0,3 х 10 9 /л. Ядро имеет два сегмента, соединенных перемычкой. В цитоплазме расположены органеллы – аппарат Гольджи, митохондрии и гранулы. 3) Базофильные гранулоциты, количество 0 – 0,06 х 10 9 /л. Ядра базофилов – сегментированы, содержат 2-3 дольки, в цитоплазме все виды органелл. Продолжительность жизни 1-2 суток. Базофилы, участвуют в регуляции процессов свертывания крови и проницаемости стенки сосудов.

23. Понятие о системе крови. Форменные элементы крови и их количество. Классификация лейкоцитов. Лейкоцитарная формула. Незернистые лейкоциты (агранулоциты): разновидности, размеры, строение, функции, продолжительность жизни.

Система крови включает в себя кровь, органы кроветворения - крас-ный костный мозг, тимус, селезенку, лимфатические узлы, лимфоидную ткань некроветворных органов. Элементы системы крови имеют общее происхождение - из мезенхимы и структурно-функциональные особенности, подчиняются общим зако-нам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. К форменным элементам крови относятся эритроциты, лейкоциты и кровяные пластинки (тромбоциты). Эритроциты 3,9 – 5,5 х 10 12/л – мужчины, женщины – 3,7 – 4,9 х 10 12/л, лейкоциты – 4-9х10 9 /л. Тромбоциты – 2 – 4 х 10 9 /л. По морфологическим признакам и биологической роли лейкоци-ты подразделяют на две группы: зернистые лейкоциты, или грану-лоциты, и незернистые лейкоциты, или агранулоциты. К гранулоцитам относятся нейтрофильные, эозинофильные и базо-фильные лейкоциты. В соответствии с окраской: различают Нейтрофильные, эозинофильные и базофильные гранулоциты. 1)Нейтрофильные гранулоциты 2,0-5,5 109/л крови. 2) Эозинофильные гранулоциты – количество – 0,02 – 0,3 х 10 9 /л. 3) Базофильные гранулоциты, количество 0 – 0,06 х 10 9 /л. Агранулоциты (незернистые лейкоциты) - относятся лимфоциты и моноциты. 1) Лимфоциты - от 4,5 до 10 мкм. Среди них различают малые лимфоциты (диаметром 4,5-6 мкм), средние (диаметром 7-10 мкм) и боль-шие (диаметром 10 мкм и более). Кроме лимфоцитов встречаются лимфоплазмоциты около 1-2%. Основная функция лимфоцитов – участие в иммунных реакция. Среди лимфоцитов различают три основных функциональных класса: В-лимфоциты, Т-лимфоциты и нулевые лимфоциты. Продолжительность жизни лимфоцитов от нескольких недель до нескольких лет.

24. Морфофункциональная характеристика и классификация соединительной ткани. Клеточные элементы волокнистой соединительной ткани: происхождение, строение, функции.

Соединительные ткани - это комплекс мезенхимных производных, состоящий из клеточных дифферонов и большого количества межклеточно-го вещества (волокнистых структур и аморфного вещества), участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тка-ней меньшей потребностью в аэробных окислительных процессах. Соединительная ткань участвует в формировании стромы органов, прослоек между другими тка-нями, дермы кожи, скелета. Соединительные ткани выполняют раз-личные функции: трофическую, защитную, опорную (биомеханическую), пластическую, морфогенетическую. Классификация: Соединительные ткани подразделяются на собственно соединитель-ную ткань (волокнистые соединительные ткани и соединительные ткани со специальными свойствами) и скелетные ткани. Последние в свою очередь подразделяются на три разновидности хрящевой ткани (гиалиновая, элас-тическая, волокнистая), две разновидности костной ткани (фиброзно-волокнистая и пластинчатая), а также цемент и дентин зуба. Рыхлая волокнистая соединительная ткань обнаруживается во всех органах, т.к. находится в кровеносных и лимфатических сосудах и образует строму многих органов. Она состоит из клеток и межклеточного вещества. Клеточные элементы: фибробласты (фиброциты, миофибробласты), макрофаги, тучные клетки, плазмотические клетки.

25. Морфофункциональная характеристика и классификация соединительной ткани. Клеточные элементы волокнистой соединительной ткани: строение и значение. Фибробласты и их роль в образовании межклеточного вещества. Строение

Соединительные ткани - это комплекс мезенхимных производных, состоящий из клеточных дифферонов и большого количества межклеточно-го вещества (волокнистых структур и аморфного вещества), участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тка-ней меньшей потребностью в аэробных окислительных процессах. Соединительная ткань участвует в формировании стромы органов, прослоек между другими тка-нями, дермы кожи, скелета. Соединительные ткани выполняют раз-личные функции: трофическую, защитную, опорную (биомеханическую), пластическую, морфогенетическую. Классификация: Соединительные ткани подразделяются на собственно соединитель-ную ткань (волокнистые соединительные ткани и соединительные ткани со специальными свойствами) и скелетные ткани. Последние в свою очередь подразделяются на три разновидности хрящевой ткани (гиалиновая, элас-тическая, волокнистая), две разновидности костной ткани (фиброзно-волокнистая и пластинчатая), а также цемент и дентин зуба. Межклеточное вещество, или матрикс, соеди-нительной ткани состоит из коллагеновых и эластических волокон, а также из основного аморфного вещества. Межклеточное вещество, как у зародышей, так и у взрослых образуется, с одной стороны, путем секреции, осу-ществляемой соединительнотканными клетками, а с другой - из плазмы крови, поступающей в межклеточные пространства. В течение жизни межклеточное вещество постоянно обновляется - резорбируется и восста-навливается. Фибробласты – клетки синтезирующие компоненты межклеточного вещества белки, гликопротеины. Среди мезинхимальных клеток, дающие начало дифферону фибробластов: стволовые клетки, полустволовые клетки – предшественники, малоспециализированные, фиброциты, миофибробласты. Функция связана с образованием основного вещества и волокон, заживлением ран, развитее рубцовой ткани.

26. Морфофункциональная характеристика и классификация соединительной ткани. Макрофаги: строение, функции, источники развития. Понятие о макрофагической системе. Вклад русских ученых в её изучение.

Соединительные ткани - это комплекс мезенхимных производных, состоящий из клеточных дифферонов и большого количества межклеточно-го вещества (волокнистых структур и аморфного вещества), участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тка-ней меньшей потребностью в аэробных окислительных процессах. Соединительная ткань участвует в формировании стромы органов, прослоек между другими тка-нями, дермы кожи, скелета. Соединительные ткани выполняют раз-личные функции: трофическую, защитную, опорную (биомеханическую), пластическую, морфогенетическую. Классификация: Соединительные ткани подразделяются на собственно соединитель-ную ткань (волокнистые соединительные ткани и соединительные ткани со специальными свойствами) и скелетные ткани. Последние в свою очередь подразделяются на три разновидности хрящевой ткани (гиалиновая, элас-тическая, волокнистая), две разновидности костной ткани (фиброзно-волокнистая и пластинчатая), а также цемент и дентин зуба. Макрофаги – это гетерогенная специализированная клеточная популяция защитной системы организма. Различают две группы: свободные и фиксированные макрофаги. Строение: имеют одно ядро, небольшого размера, округлой или неправильной формы, где содержатся крупные глыбы хроматина. Цитоплазма базофильна. Содержат митохондрии гранулярную эндоплазматическую сеть, аппарат Гольджи и включение гликогена. Наличие рецепторов обуславливает их участие в иммунных реакциях. Макрофаги вырабатывают хемотаксические факторы для лимфоцитов. Они образуются из стволовых клеток, от моноцита промоноцита. Макрофагическая система. Сюда относятся совокупность всех клеток, обладающих способность захватывать из тканевой жидкости инородные частицы, погибшие клетки, бактерии. Этот материал подвергается ферментативному расщеплению. Вклад в её изучение внес первым Мечников. Он дал ей название (макрофагическая).

27. Морфофункциональная характеристика и классификация соединительной ткани. Соединительной ткани со специальными свойствами: классификация, строение и функции.

Соединительные ткани - это комплекс мезенхимных производных, состоящий из клеточных дифферонов и большого количества межклеточно-го вещества (волокнистых структур и аморфного вещества), участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тка-ней меньшей потребностью в аэробных окислительных процессах. Соединительная ткань участвует в формировании стромы органов, прослоек между другими тка-нями, дермы кожи, скелета. Соединительные ткани выполняют раз-личные функции: трофическую, защитную, опорную (биомеханическую), пластическую, морфогенетическую. Классификация: Соединительные ткани подразделяются на собственно соединитель-ную ткань (волокнистые соединительные ткани и соединительные ткани со специальными свойствами) и скелетные ткани. Последние в свою очередь подразделяются на три разновидности хрящевой ткани (гиалиновая, элас-тическая, волокнистая), две разновидности костной ткани (фиброзно-волокнистая и пластинчатая), а также цемент и дентин зуба. Соединительная ткань со специальными свойствами: 1) Ретикулярная, 2) Жировая, 3) Слизистая ткань. Ретикулярная ткань имеет сетевидное строение и состоит из отростчатых ретикулярных волокон. Она образует строму кроветворных органов и микроокружение для развивающихся в них клеток крови. Ретикулярные волокна продукт синтеза ретикулярных клеток. 2) Жировая ткань – это скопление жировых клеток, встречающихся во многих органах. Различают белую и бурую жировую ткань. Жировая ткань отчетливо делится прослойками рыхлой волокнистой соединительной ткани на дольки. В этой ткани происходит активный процесс обмена жирных кислот, углеводов и образования жира из углеводов. Она играет механическую и обменную роль в организме. 3) Слизистая ткань – в норме встречается только у зародыша. Она имеет способность к синтезу виментина.

28. М.Ф.Х. и классификация хрящевой ткани. Развитее, строение, функция. Рост хряща, регенерация, возрастные изменения.

Хрящевые ткани входят в состав органов дыхатель-ной систем, суставов, межпозвоночных дисков и др., состоят из клеток - хондроцитов и хондробластов и большого количества межклеточного гидро-фильного вещества, отличающегося упругостью. Собственно хрящевая ткань не имеет кровеносных сосудов, а питательные вещества диффундируют из окружающей ее надхрящницы. Различают три вида хрящевой ткани: гиалинов Развитие хрящевой ткани осу-ществляется как у эмбриона, так и в постэмбриональном периоде при ре-генерации. В процессе развития хрящевой ткани из мезенхимы образуется хрящевой дифферон: стволовые клетки, полустволовые, хондробласты, хондроциты. Источником развития хрящевых тканей является мезенхима. В первой стадии в некоторых участках тела зародыша, где образуется хрящ, клетки мезенхимы, теряют свои отростки, усиленно размножаются и, плотно прилегая, друг к другу, создают определенное напряжение - тургор. Стадия - образования первичной хрящевой ткани, клетки центрального участка (первичные хондроциты) округляются, увеличиваются в размере. Стадия дифференцировки хрящевой ткани. Физиологическая регенерация хрящевой ткани осуществляется за счет мало специализированных клеток надхрящницы и хряща путем размножения и дифференцировки прехондробластов и хондробластов. По мере старения организма в хрящевой ткани уменьшается концентрация протеогликанов и связанная с ним гидрофильность. Ослабляются процессы размножения хондробластов и молодых хондроцитов. В цитоплазме клеток уменьшается объем аппарата Гольджи, гранулярной эндоплазматической сети, митохондрий и снижается активность ферментов.

30. М.Ф.Х. и классификация костных тканей. Строение плоских и трубчатых костей. Прямой и непрямой остеогенез. Регенерация костей.

Костные ткани – это специализированный тип соединительной ткани, с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. Органическое вещество – матрикс костной ткани – представлено белками коллагенового типа и липидами. Существует два основных типа костной ткани: ретикулофибпозная и пластинчатая. К костной ткани относятся также дентин и цемент зуба. Трубчатая кость как орган, в основном построена из пластинчатой косной ткани, кроме бугорков. Снаружи кость покрыта надкостницей, кроме суставных поверхностей эпифизов. Они покрыты разновидностью гиалинового хряща. Надкостница (периост) – различают два слоя: 1) Это наружный слой образован волокнистой соединительной тканью, 2) Внутренний слой содержит камбиальные клетки, преостеобласты и остеобласты. Прямой остеогистогенез характерен для раз-вития грубоволокнистой костной ткани при образовании плоских костей. Этот процесс наблюдается в основном в течение первого месяца внутриутробного развития. В первой стадии - образование скелетогенного островка. Во второй стадии, образуется оксифильное межклеточное вещество с коллегановыми фибриллами - органическая матрица костной ткани. Третья стадия - кальцификация межкле-точного вещества. Непрямой остеогистогенез. На 2-м месяце эмбрионального развития в местах будущих трубчатых костей закладывается из мезенхимы хрящевой зачаток, который очень быстро принимает форму будущей кости. Развитие кости на месте хряща, т.е. непрямой остеогенез, начинается в области диафиза. Физиологическая регенерация костной ткани происходит медленно за счет остеогенных клеток надкостницы, эндоста и остеогенных клеток в канале остеона.

31. М.Ф.Х. и классификация мышечных тканей. Гладкая мышечная ткань: источники развития, строение, иннервация. Структурные основы сокращения мышечных клеток. Регенерация.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.). Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина. Специальные сократительные органеллы - актина и миозина при обязательном участии ионов кальция. Связывание кислорода и создание его запаса на момент сокращения мышцы. Классификация. В зависимости от структуры органелл сокращения мышечные ткани делят на две группы: 1) Поперечно полосатые мышечные ткани, 2) Гладкие мышечные ткани. В соответствии с гисто генетическим принципом в зависимости от источника развития мышечные ткани делят на 5 типов: мезенхимные, эпидермальный, нейральные, целомические, соматические. Гладкая мышечная ткань. Различают три группы гладких мышечных тканей: мезенхимные, эпидермальный, нейральные. Эти волокна в мезенхиме мигрируют к местам закладки органов, будучи уже детерминированными. Они синтезируют компоненты матрикса и коллагена базальной мембраны. Гладкий миоцит – веретеновидная клетка. Ядро палочковидное, находится в центральной части. Много митохондрий, сосредоточенных около ядра, аппарат Гольджи развит слабо. Физиологическая регенерация проявляется в условиях повышенных функциональных нагрузок на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, увеличивается количество миофиламентов.

32. М.Ф.Х. и классификация мышечных тканей. Исчерченная скелетная мышечная ткань: источники развития, строение, иннервация. Строение основы сокращения мышечного волокна. Типы мышечных волокон. Регенерация.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.). Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина. Специальные сократительные органеллы - актина и миозина при обязательном участии ионов кальция. Связывание кислорода и создание его запаса на момент сокращения мышцы. Классификация. В зависимости от структуры органелл сокращения мышечные ткани делят на две группы: 1) Поперечно полосатые мышечные ткани, 2) Гладкие мышечные ткани. В соответствии с гисто генетическим принципом в зависимости от источника развития мышечные ткани делят на 5 типов: мезенхимные, эпидермальный, нейральные, целомические, соматические. Источником развития элементов скелетной поперечнополосатой мышечной ткани являются клетки миотомов - миобласты. Их дифференцировка продолжается в местах закладки других мышц. В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты - мышечные трубочки. Клетки другой линии остаются самостоятельными и дифференцируют-ся в миосателлитоциты. Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой. Мышечные волокна подразделяют на быстрые медленные и промежуточные. Регенерация. Пока организм растет, миосателлитоциты делятся, а дочерние клетки встраиваются в концы симпластов. По окончании роста размножение миосателлитоцитов затухает. При травме мышечное волокно повреждается и его фрагменты фагоцитируются макрофагами.

33. М.Ф.Х. и классификация мышечных тканей. Источники развития. Мышца как орган: строение, васкуляризация, эфферентная и афферентная иннервация. Связь мышцы с сухожилием.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.). Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина. Специальные сократительные органеллы - актина и миозина при обязательном участии ионов кальция. Связывание кислорода и создание его запаса на момент сокращения мышцы. Классификация. В зависимости от структуры органелл сокращения мышечные ткани делят на две группы: 1) Поперечно полосатые мышечные ткани, 2) Гладкие мышечные ткани. В соответствии с гисто генетическим принципом в зависимости от источника развития мышечные ткани делят на 5 типов: мезенхимные, эпидермальный, нейральные, целомические, соматические. Между мышечными волокнами находятся тонкие прослойки рыхлой волокнистой соединительной ткани – эндомизий. Коллагеновые волокна наружного листка базальной мембраны вплетаются в него. Толстые прослойки рыхлой соединительной ткани окружают по нескольку мышечных волокон, образуя перимизий, и разделяют мышцу на пучки. Соединительную ткань, окружающую поверхность мышцы, называют эпимизием. Артерии вступая в мышцу, постепенно истончаются. Ветви пятого – шестого порядка образуют в перимизии артериолы. В эндомизии капилляры.

34. М.Ф.Х. и классификация мышечных тканей. Исчерченная сердечная мышечная ткань: источник развития, структурно-функциональная характеристика. Регенрация.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.). Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина. Специальные сократительные органеллы - актина и миозина при обязательном участии ионов кальция. Связывание кислорода и создание его запаса на момент сокращения мышцы. Классификация. В зависимости от структуры органелл сокращения мышечные ткани делят на две группы: 1) Поперечно полосатые мышечные ткани, 2) Гладкие мышечные ткани. В соответствии с гисто генетическим принципом в зависимости от источника развития мышечные ткани делят на 5 типов: мезенхимные, эпидермальный, нейральные, целомические, соматические. Источники развития сердечной поперечнопо-лосатой мышечной ткани - имметрич-ные участки висцерального листка спланхнотома в шейной части зароды-ша - миоэпикардиальные пластинки. Из них дифференцируются также клет-ки мезотелья эпикарда. В ходе гистогенеза возникает 5 видов кардиомиоцитов - рабочие, синусные, переходные, проводящие, а также секреторные. Кардиомиоцит – клетка, имеющая удлиненную форму. Ядро овальное и лежит в центре клетки. Специальные органеллы, которые обеспечивают сокращение, называются миофибриллами. Кардиомиоциты соединяются друг с другом своими торцевыми концами. При длительной работе происходит рабочая гипертрофия кардиомиоцитов. Погибающие Кардиомиоциты не восстанавливаются, т.к. стволовых клеток в сердечной мышцы нет.

35. Морфофункциональная характеристика нервной ткани. Источники развития. Нейроциты: функции, строение, морфологическая и функциональная классификация.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже-ний, возбуждения, выработки импульса и передачи его. Она является осно-вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре-дой. Нервные клетки - основные струк-турные компоненты нервной ткани, выполняющие специфическую функ-цию. Нейроглия обеспечивает существование и функционирова-ние нервных клеток, осуществляя опорную, трофическую, разграничитель-ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Нейроциты – специализированные клетки нервной системы, ответственные за рецепцию обработку стимулов, проведение импульсов, влияние на другие нейроны, мышечные или секреторные клетки. Они выделяют нейромедиаторы, передающие информацию. Нейрон состоит из тела и отростков: аксона и ветвящихся дендритов. По количеству отростков различают: униполярные нейроны, биполярные и мультиполярные. Среди биполярных встречаются псевдоуниполярные.

36. Морфофункциональная характеристика нервной ткани. Источники развития. Нервные волокна: определение, строение и функциональные особенности миелиновых и безмиелиновых нервных волокон. Регенерация нервных волокон.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже-ний, возбуждения, выработки импульса и передачи его. Она является осно-вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре-дой. Нервные клетки - основные струк-турные компоненты нервной ткани, выполняющие специфическую функ-цию. Нейроглия обеспечивает существование и функционирова-ние нервных клеток, осуществляя опорную, трофическую, разграничитель-ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Отростки нервных клеток, покрытые оболочками называются нервными волокнами. По строению оболочек различают: миелиновые и безмиелиновые. Отросток нервной клетки называют осевым цилиндром или аксоном. 1) Безмиелиновые нервные волокна находятся в составе вегетативной нервной системы. Они располагаются плотно, образуя тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. 2) Миелиновые нервные волокна, встречаются в центральной и периферической нервной системе. Они толще предыдущих. Они состоят из осевого цилиндра. В миелиновом волокне два слоя оболочек: 1) Миелиновые, 2) нейролемма. Регенерация зависит от места травмы. Погибшие нейроны не восстанавливаются. Нервные волокна в составе периферических нервов обычно хорошо регенерируют (головной и спинной мозг).

37. Морфофункциональная характеристика нервной ткани. Источники развития. Нейрология: классификация, её строение и значение различных типов глиоцитов.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже-ний, возбуждения, выработки импульса и передачи его. Она является осно-вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре-дой. Нервные клетки - основные струк-турные компоненты нервной ткани, выполняющие специфическую функ-цию. Нейроглия обеспечивает существование и функционирова-ние нервных клеток, осуществляя опорную, трофическую, разграничитель-ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Нейроглия: глия центральной нервной системы, и периферической нервной системы. Глия центральной нервной системы: 1) Макроглия, 2) Микроглия. Макроглия состоит: 1) Эпендимоциты – выстилают желудочки головного мозга и центральный канал спинного мозга, клетки цилиндрической формы, имеют подвижные реснички, митохондрии, аппарат Гольджи. 2) Астроциты – клетки отростчатой формы, выполняют опорную и разграничительную функцию. 3) Олигодендроциты имеют интенсивно окрашенные ядра. Находятся в сером и белом веществе. Цитоплазма содержит митохондрии, аппарат Гольджи, микротрубочки.

38. Морфофункциональная характеристика нервной ткани. Источники развития. Нервные окончания: понятие, классификация, строение рецепторных и эффекторных окончаний.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже-ний, возбуждения, выработки импульса и передачи его. Она является осно-вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре-дой. Нервные клетки - основные струк-турные компоненты нервной ткани, выполняющие специфическую функ-цию. Нейроглия обеспечивает существование и функционирова-ние нервных клеток, осуществляя опорную, трофическую, разграничитель-ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Нервные волокна оканчиваются концевыми аппаратами – нервными окончаниями. Различают три группы: 1) концевые аппараты, образующие межнейрональные синапсы, и осуществляющие связь нейронов между собой. 2) Эффекторные окончания, передающие нервный импульс на ткани рабочего органа. 3) Рецепторные. Эффекторные нервные окончания бывают двигательные и секреторные. Двигательные – это концевые аппараты аксонов, двигательных клеток соматической или вегетативной нервной системы. Рецепторные нервные окончания воспринимают различные раздражения. Бывают 1) Экстерорецепторы. 2) Энтерорецепторы.

39. Морфофункциональная характеристика нервной ткани. Источники развития. Синапсы: понятие, строение, механизмы передачи нервного импульса в синапсах, классификация синапсов.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже-ний, возбуждения, выработки импульса и передачи его. Она является осно-вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре-дой. Нервные клетки - основные струк-турные компоненты нервной ткани, выполняющие специфическую функ-цию. Нейроглия обеспечивает существование и функционирова-ние нервных клеток, осуществляя опорную, трофическую, разграничитель-ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Синапсы – это структуры, предназначенные для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры. Синапсы обеспечивают поляризацию проведения импульса по цепи нейронов. Синапсы бывают химические и электрические. Химические синапсы передают импульсы на другую клетку с помощью неромедиаторов, находящихся в синаптических пузырьках. Терминаль аксона представляет собой пресинаптическую часть. Область второго нейрона постсинаптическую часть. Пресинаптическая мембрана. Это мембрана клетки, передающей импульс. Здесь лежат кальциевые каналы. Постсинаптическая мембрана участок плазмолеммы клетки воспринимающей медиаторы генерирующий импульс.

40. Морфофункциональная характеристика нервной ткани. Источники развития. Рефлекторные дуги: понятие, строение простых и сложных дуг. Нейронная теория, вклад зарубежных и советских ученых в её становление и утверждении.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже-ний, возбуждения, выработки импульса и передачи его. Она является осно-вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре-дой. Нервные клетки - основные струк-турные компоненты нервной ткани, выполняющие специфическую функ-цию. Нейроглия обеспечивает существование и функционирова-ние нервных клеток, осуществляя опорную, трофическую, разграничитель-ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, основой которого является рефлекторная дуга. Она представляет собой цепь нейронов, связанных друг с другом синапсами. Обеспечивает проведение нервного импульса от рецептора до эфферентного окончания в рабочем органе. Простая рефлекторная дуга состоит из двух нейронов чувствительного и двигательного. Между их нейронами включены вставочные нейроны.

41. Морфофункциональная характеристика нервной системы. Нервы и спиномозговые ганглии: развитее, функции, строение. Регенерация нервов.

Нервная система обеспечивает регуляцию всех жизненных процессов в организме и его взаимодействие с внешней средой. Анатомически нервную систему делят на центральную и периферическую. К первой от-носят головной и спинной мозг, вторая объединяет периферические нервные узлы, стволы и окончания. Развитие. Нервная система развивается из нервной трубки и ганглиоз-ной пластинки. Из краниальной части нервной трубки дифференцируются головной мозг и органы чувств. Из туловищного отдела нервной трубки и ганглиозной пластинки формируются спинной мозг, спинномозговые и веге-тативные узлы и - хромаффинная ткань организма. Спинномозговой узел (спинальный ганглий) окружен соединительно-тканной капсулой. От капсулы в паренхиму узла проникают тонкие прослой-ки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла располагаются группами, преимуще-ственно по периферии органа, тогда как его центр состоит главным обра-зом из отростков этих клеток. Дендриты идут в составе чувствительной ча-сти смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Биполярные нейроны - афферентные нейроны некоторых черепных нервов. Нервные клетки спинномозговых узлов окружены слоем кле-ток ганглии - мантийными глиоцитами, или глиоцитами ганглия. Снаружи глиальная оболочка тела ней-рона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер.

42. Морфофункциональная характеристика нервной системы. Спинной мозг: развитее, функции, строение серого и белого вещества, их функциональное значение.

Нервная система обеспечивает регуляцию всех жизненных процессов в организме и его взаимодействие с внешней средой. Анатомически нервную систему делят на центральную и периферическую. К первой от-носят головной и спинной мозг, вторая объединяет периферические нервные узлы, стволы и окончания. Развитие. Нервная система развивается из нервной трубки и ганглиоз-ной пластинки. Из краниальной части нервной трубки дифференцируются головной мозг и органы чувств. Из туловищного отдела нервной трубки и ганглиозной пластинки формируются спинной мозг, спинномозговые и веге-тативные узлы и - хромаффинная ткань организма. Спинной мозг – развитее из нервной трубки образуются в нейроны, группирующиеся в пластинах. Серое вещество – состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглий. Основная часть – мультиполярные нейроны. Белое вещество – совокупность продольно ориентированных миелиновых волокон. Нейроциты – клетки сходные по размеру, строению, функциональному значению, находящемуся в сером веществе группами, называются ядрами. Выделяют клетки: 1) Корешковые клетки, нейриты которых покидают спинной мозг в составе его передних корешков, 2) Внутренние клетки, отростки которых заканчиваются синапсами в пределах серого вещества. 3) Пучковые клетки, аксоны которых проходят в белом веществе обособленными пучками волокон. Несут нервные импульсы, от определенных ядер спинного мозга образуя проводящие пути. В задних рогах различают: губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро.

43. Ствол головного мозга. Источники развития. Принцип организации серого и белого вещества. Продолговатый мозг: строение, функции.

В состав ствола мозга входят: продолговаты мозг, мост, мозжечок, структуры среднего и промежуточного мозга. Все ядра серого вещества ствола мозга состоят из мультиполярных нейронов. Различают ядра черепных нервов и переключательного ядра. К первым относятся ядра подъязычного, добавочного, блуждающего, языкоглоточного нервов продолговатого мозга. К числу вторых относятся нижние, медиальная добавочная и заднее добавочное ядра продолговатого мозга; Зубчатое ядро, пробковидное ядро, ядро шатра. Продолговатый мозг. В центре находится важный координационный аппарат головного мозга – ретикулярная формация. Белое вещество. Основные его пучки миелиновых волокон представлены кортикоспинальными пучками, лежат в его вентральной части.

44. Головной мозг. М.Ф.Х. больших полушарий, особенности строения в двигательных и чувствительных зонах. Миелоархитектоника. Гемато-энцифалический барьер, его строение и значение. Возрастные изменения коры.

В головном мозге различают белое и серое вещество. Большая часть серого вещества располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга. Кора представлена слоем серого вещества толщиной около 3 мм. Мультиполярные нейроны коры: 1) Пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны. Нейроны коры расположены Нерезко ограниченными слоями. В двигательной зоне различают шесть основных слоев: молекулярный, наружный зернистый, слой пирамидных нейронов, внутренний зернисты, ганглионарный, слой полиморфных клеток. В период развития первым на шестом месяце дифференцируются пятый и шестой слои, а на восьмом – второй, третий, четвертый слои. Среди нервных волокон коры выделяют ассоциативные волокна, комиссуральные, проекционные волокна. Эти волокна в коре полушарий образуют радиальные лучи, заканчивающиеся в пирамидном слое. В процессе развития коры в оногенезе отмечаются изменения в распределении и структуре нейронов и глиоцитов, кровеносных сосудов. У взрослых людей – уменьшается число нейронов в коре на единицу объема (зависит от гибели части нейронов).

45. Мозжечок. Строение и функциональная характеристика, нейронный состав коры мозжечка. Межнейрональные связи. Афферентные и эфферентные нервные волокна.

Основная масса серого вещества в мозжечке распо-лагается на поверхности и образует его кору. Меньшая часть серого веще-ства лежит глубоко в белом веществе в виде центральных ядер. В центре каж-дой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества - корой. В коре мозжечка различают три слоя: наружный - молекулярный, средний - ганглионарный слой, или слой грушевидных нейронов, и внутренний - зернистый. Ганглиозный слой содержит грушевидные нейроны (клетки Пуркинье). Они имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей. В ганглионарном слое клетки располагаются строго в один ряд. Очень богат нейронами зернистый слой. Первым типом кле-ток этого слоя можно считать зерновидные нейроны, или клетки-зерна. Вторым типом клеток – являются тормозные большие звездчатые нейроны. Различают два вида таких клеток: с короткими и длинными нейритами. Третий тип клеток составляют веретеновидные горизонтальные клетки. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами волокон: моховидными и лазящими. Кора мозжечка содержит глиальные элементы: волокнистые и протоплазматические астроциты.

46. Автономная (вегетативная) нервная система. Общая морфофункциональная характеристика, отделы. Строение экстра – и интрамуральных ганглиев и ядер центральных отделов автономной нервной системы.

Автономная нервная система – это часть нервной системы, контролирующая висцеральные функции организма. Её ядра находятся в среднем и продолговатом мозге, в боковых рогах грудных, поясничных и крестцовых сегментов спинного мозга. К симпатической нервной системе относятся вегетативные ядра боковых рогов грудного и поясничного отдела спинного мозга. Мультиполярные нейроны ядер центрального отде-ла представляют собой ассоциативные нейроны рефлекторных друг вегета-тивной нервной системы. Их нейриты покидают центральную не-рвную систему через передние корешки спинного мозга или черепные не-рвы и оканчиваются синапсами на нейронах одного из периферических вегетативных ганглиев. Это преганглионарные волокна вегетативной нервной системы, обычно миелиновые. Вегетативные ганглии снаружи покрыты соединительнотканной капсу-лой. Ганглии парасимпатического отдела вегетативной нервной системы ле-жат или вблизи иннервируемого органа, или в его интрамуральных нервных сплетениях. Преганглионарные волокна заканчиваются на телах нейронов, а чаще на их дендритах холинергическими синапсами. Ганглий интрамуральных сплетений содержат эфферентные нейроны, рецепторные и ассоциативные клетки местных рефлекторных дуг. В интрамуральных сплетениях различают три вида клеток: длинноаксонные, равноотростчатые, ассоциативные.

47. М.Ф.Х. сосудистой системы. Источники развития сосудов. Артерии: классификация, их строение и функция. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.

Сердечно-сосудистая система - совокупность органов (сердце, кровеносные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически ак-тивные вещества, газы, продукты метаболизма. В теле зародыша из мезенхимы образуются первичные кровеносные со-суды, имеющие вид трубочек и щелевидных пространств. В конце 3-й недели внутриутробного развития сосуды тела зародыша начинают сообщаться с сосудами внезародышевых органов.) В кровеносной системе различают артерии, артериолы, гемокапилляры, венулы, вены и артериоловенулярные анастомозы. Взаимосвязь между артериями и венами осуществля-йся системой сосудов микроциркуляторного русла. Стенка всех артерий и вен состоит из трех оболочек: внутренней, средней, наружной. Их толщина, тканевой состав, функциональные особенности не одинаковые. По особенностям строения артерии бывают трех типов: эластического, мышечного и смешанного. 1) Артерии эластического типа - характеризуются вы-раженным развитием в их средней оболочке эластических структур. Внутренняя оболочка аорты включает эндотелий, подэндотелиальный слой и сплетение эластических волокон. Наружная оболочка аорты построена из рыхлой волокнистой соединительной ткани, с большим количеством толстыхэластических и коллагеновых волокон. 2) Артерии мышечного типа – к ним относятся сосуды среднего и мелкого калибра. В состав внутренней оболочки входят эндотелий с базальной мембраной, подэндотелиальный слой и внутренняя эластическая мембрана. Средняя оболочка – содержит гладкие мышечные волокна расположенные по спирали. Наружный слой состоит из рыхлой волокнистой соединительной ткани. 3) Артерии мышечно-эластического типа – занимают промежуточное положение. К ним относятся: сонная и подключичная артерия.

48. М.Ф.Х. сосудистой системы. Источник развития сосудов. Вены: классификация, их строение и функция. Связь структуры вен с гемодинамическими условиями. Возрастные изменения.

Сердечно-сосудистая система - совокупность органов (сердце, кровеносные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически ак-тивные вещества, газы, продукты метаболизма. В теле зародыша из мезенхимы образуются первичные кровеносные со-суды, имеющие вид трубочек и щелевидных пространств. В конце 3-й недели внутриутробного развития сосуды тела зародыша начинают сообщаться с сосудами внезародышевых органов.) Вены - осуществляют отток крови от органов, участвуют в обменной и депонирующей функциях. Различают поверхностные и глубокие вены. Вены широко анастомозируют, образуя в органах сплетения. Отток крови начинается по посткапиллярным венулам. Во многих венах имеются клапаны. Клапаны в венах способствуют току венозной крови к сердцу, препят-ствуя ее обратному движению. Особенностью гистоструктуры вены является относительно слаборазвитый эластический каркас. В венах отсутствуют внутренняя и наружная эластические мембраны. По степени развития мышечных элементов в стенках вен они могут быть разделены на две группы: вены волокнистого и вены мышечного типа. Вены мышечного типа в свою оче-редь подразделяются на вены со слабым, средним и сильным раз-витием мышечных элементов. В венах, так же как и в артериях, различают три оболочки: внутрен-нюю, среднюю и наружную.1) Вены волокнистого типа отличаются тонкостью сте-нок и отсутствием средней оболочки. 2) Вены мышечного типа характеризуются наличием в их оболочках гладких мышечных клеток. Различают вены со слабым, средним и сильным развитием мышечных элементов.

49. Артериолы, капилляры, венулы: функция и строение. Органоспецифичность капилляров. Понятие о гистогематическом барьере.

Артериолы - это наиболее мелкие артериальные сосуды мышечного типа диаметром не более 50-100 мкм, которые, с одной стороны, связаны с артериями, а с другой - постепенно переходят в капилляры. В артериолах со-храняются три оболочки, характерные для артерий вообще, однако выра-жены они очень слабо. Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболоч-ка образована 1-2 слоями гладких мышечных клеток, имеющих спирале-видное направление. Наружная оболочка представлена рыхлой волокнистой соеди-нительной тканью. Капилляры – наиболее многочисленные и тонкие сосуды, с различными просветам. Они формируют сосудистую сеть. В стенки капилляров различают три тонких слоя: 1) Внутренний слой представлен эндотелиальными клетками, расположенными на базальной мембране. 2) Средний состоит из перицитов, заключенных в базальную мембрану. 3) Наружный – из редко расположенных адвентициальных клеток и тонких коллагеновых волокон. Различают три разновидности венул: посткапиллярные, соби-рательные и мышечные. Барьерная функция эндотелия капилляров связана с рецепторами, цитоскелетом эндотелиоцитов, базальной мембраной. Вдоль внутренней и наружной поверхностей, эндотелиальных клеток, располагаются пиноцитозные пузырьки и кавеолы.

50. М.Ф.Х. сосудов макроциркуляторного русла. Артериолы, венулы, артериоло-венулярные анастомозы: функции и строение. Классификация и строение различных типов артериоло-венулярных анастомозов.

Микроциркуляторное русло - система мелких сосудов включающая артериолы, гемокапилляры, венулы, а также артериоловенулярные анастомозы. Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами, и лимфатическими сосудами вместе с окружающей соединительной тканью обеспечивает регуляцию кро-венаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Артериолы - это наиболее мелкие артериальные сосуды мышечного типа диаметром не более 50-100 мкм, которые, с одной стороны, связаны с артериями, а с другой - постепенно переходят в капилляры. В артериолах со-храняются три оболочки, характерные для артерий вообще, однако выра-жены они очень слабо. Внутренняя оболочка этих сосудов состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны. Средняя оболоч-ка образована 1-2 слоями гладких мышечных клеток, имеющих спирале-видное направление. Наружная оболочка представлена рыхлой волокнистой соеди-нительной тканью. Различают три разновидности венул: посткапиллярные, соби-рательные и мышечные. Артериоловенулярные анастомозы (ABA) - это соединения сосудов, несущих артериальную кровь в вены в обход капиллярного русла. Различают две группы анастомозов: 1) истин-ные ABA (шунты), по которым сбрасывается чисто артериальная кровь, 2) атипичные ABA (полушунты), по которым течет смешанная кровь. Первая группа истинных анастомозов (шунты) может иметь различную внешнюю форму - прямые короткие соустья, петли, ветвящи-еся соединения. По своему строению они подразделяются на две подгруп-пы: а) простые ABA, б) ABA, снабженные специальными сократительны-ми структурами.

51. М.Ф.Х. сосудистой системы. Лимфатические сосуды: источник развития, их классификация, строение и функция.

Лимфатические сосуды - часть лимфатической системы, включающей в себя еще и лимфатические узлы. В функциональном отношении лимфатичес-кие сосуды тесно связаны с кровеносными, особенно в области расположе-ния сосудов микроциркуляторного русла. Именно здесь происходят образова-ние тканевой жидкости и проникновение ее в лимфатическое русло. Среди лимфатических сосудов различают лимфатичес-кие капилляры, интра - и экстраорганные лимфатические сосуды, отводящие лимфу от органов, и главные лимфатические стволы тела - грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. По стро-ению различают лимфатические сосуды безмышечного и мышечного типов. Лимфатические капилляры - начальные отделы лимфатической системы, в которые из тканей поступает тканевая жидкость вместе с продуктами обмена веществ, а в патологических случа-ях - инородные частицы и микроорганизмы. Лимфатические капилляры представляют собой систему замкнутых трубок с одного конца. Диаметр лимфа-тических капилляров в несколько раз больше, чем кровеносных. Стен-ка лимфатических капилляров состоит из эндотелиальных клеток, которые в 3-4 раза крупнее таковых кровеносных капилляров. Отводящие лимфатические сосуды – наличие в них клапанов и хорошо развитой наружной оболочки.

52. Сердце. М.Ф.Х. Источники развития. Строение оболочек стенки сердца. Строение сердечных клапанов. Васкуляризация. Регенерация. Возрастные изменения.

Сердце состоит из трех оболочек: внутренней – эндокарда, средней – миокарда, наружной – эпикарда. Первая закладка сердца появляется в начале 3 –ей недели развития у эмбриона длинной 1,5 мм., в виде парного скопления мезинхимальных клеток. Позднее эти скопления, превращаются в две удлиненные трубочки, сливаются и из их стенок образуется эндокард. В конце второго месяца – признаки формирования проводящей системы. К 4-му месяцу – заканчивается образование всех отделов проводящей системы. 1) Эпикард. Поверхность эндокарда, обращенная в полость сердца, выстлана эндо-телием, состоящим из полигональных клеток, лежащих на толстой базальной мембране. За ним следует подэндотелиальный слой, образован-ный соединительной тканью. Глубже располагается мышечно-эластический слой, в котором эластические волокна переплетаются с гладкими мышеч-ными клетками. Самый глубокий слой эндокарда - наружный соединительнотканный - лежит на границе с миокардом. Он состоит из соединительной тка-ни, содержащей толстые эластические, коллагеновые и ретикулярные во-локна. 2) Миокард – мышечная оболочка, состоящая из тесно связанных между собой поперечно полосатых мышечных клеток – кардиомиоцитов. Различают два типа: сократительные сердечные миоциты, проводящие сердечные миоциты. 3) Эпикард – образован тонкой пластинкой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность её покрыта мезотелием. Различают поверхностный слой коллагеновых волокон, слой эластических волокон, глубокий слой коллагеновых волокон, и глубокий коллагеновый эластический слой. В перикарде соединительно тканная основа развита сильнее. В ней много эластических волокон. Створки клапанов кровеносных сосудов не имеют. Слои: внутренний слой, средний слой, наружный слой, опорный скелет. Регенераторные процессы сопровождаются увеличением количества кардиомиоцитов (осуществляется главным образом путем внутриклеточной регенерации, без увеличения количества клеток).

53. Сердце. М.Ф.Х. Источники развития. Проводящая система сердца: строение и функциональное значение. Иннервация. Структурные основы эндокринной функции сердца.

Сердце состоит из трех оболочек: внутренней – эндокарда, средней – миокарда, наружной – эпикарда. Первая закладка сердца появляется в начале 3 –ей недели развития у эмбриона длинной 1,5 мм., в виде парного скопления мезинхимальных клеток. Позднее эти скопления, превращаются в две удлиненные трубочки, сливаются и из их стенок образуется эндокард. В конце второго месяца – признаки формирования проводящей системы. К 4-му месяцу – заканчивается образование всех отделов проводящей системы. Проводящая система сердца – мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца. В состав этой системы входят: синусо-предсердный узел, предсердно-желудочковый узел, предсердно-желудочковый пучок (Пучок Гиса), их разветвление (волокна Пуркинье). Различают три типа мышечных клеток, которые в разных соотношениях находятся в различных отделах этой системы. 1) Клетки узла проводящей системы – центральная часть его – клетки первого типа (водители ритма или пейсмейкерные клетки). Основная часть второго типа – переходные клетки. Третий тип – пучки Гиса. В стенки сердца есть несколько нервных сплетений: безмиелиновые волокна адренергической и холинергической природы. Эффекторная часть рефлекторной дуги представлена нервными волокнами холинергической природы, образованными аксонами. Они находятся в сердечных ганглиях нейроцитов.

54. Органы чувств. Общая морфо-функциональная характеристика. Понятие об анализаторах. Классификация органов чувств. Орган обоняния и вкуса: строение, развитие, цитофизиология.

Сенсорная систем: совокупность органов и структур обеспечивающих восприятие различных раздражителей, действующих на организм. Сенсорная система, это анализаторы внешней и внутренней среды, которые обеспечивают адаптацию организма к конкретным условиям. Соответственно в каждом анализаторе различают 3 части: перифери-ческую (рецепторную), промежуточную и центральную. Периферическая часть представлена органами, в которых находятся спе-циализированные рецепторные клетки. По специфичности восприятия сти-мулов различают механорецепторы (рецепторы органа слуха, равнове-сия, тактильные рецепторы кожи, рецепторы аппарата движения, барорецепторы), хеморецепторы (органов вкуса, обоняния, сосудистые интерорецепторы), фоторецепторы (сетчатки глаза), терморецепторы (кожи, внутренних органов), болевые рецепторы. Классификация органов чувств. К первому типу относятся органы чувств, у которых рецепторами являются специализированные нейросенсорные клетки, преобразующие внешнюю энергию в нервный импульс. Ко второму типу относятся органы чувств, у которых рецепторами являются не нервные, а эпителиальные клетки. К третьему типу с невыраженной анатомически органной формой относятся проприоцептивная кожная и висцеральная сенсорные системы. Обонятельный анализатор представлен системами – основной и вомеронозальной. Каждая из них имеет три части: периферическую, промежуточную, центральную. Обонятельный анализатор состоит из пласта многоядерного эпителия, в котором различают обонятельные нейросенсорные клетки, поддерживающие и базальные эпителиоциты. Орган вкуса – периферическая часть вкусового анализатора представлена рецепторными эпителиальными клетками во вкусовых почках. Каждая вкусовая почка занимает толщу многослойного эпителиального пласта сосочка. Она состоит из клеток: Сенсоэпителиальные, “темные” поддерживающие, базальные малодифференцированные, и периферические.

55. Орган зрения. Морфофункциональная характеристика. Развитие. Строение рецепторного аппарата глаза. Изменение в нем под влиянием света и в темноте. Представление о зрительном анализаторе.

Глаз – представлен периферической частью зрительного анализатора, в котором рецепторную функцию выполняют нейроны сетчатой оболочки. Глаз развивается из различных эмбриональных зачатков. Сетчатка и зрительный нерв формируются из нервной трубки, путем образования глазных пузырьков сохраняющих связь с эмбриональным мозгом при помощи полых глазных стебельков. Рецепторный аппарат глаза представлен зрительной частью сетчатой оболочки – сетчаткой, состоящей из наружного пигментного слоя, и внутреннего светочувствительного нервного слоя. Сетчатка состоит из трех типов радиально расположенных нейронов и двух слоев синапсов. Первый тип – это фоторецепторные нейроны (палочковые и колбочковые), второй тип биполярные нейроны, третий тип – ганглионарные нейроны. Палочковые клетки являются рецепторами ночного зрения, колбочковые – дневного зрения. Нейроны представляют собой длинные цилиндрической формы клетки, которые имеют несколько отделов.

56. Орган зрения. М.Ф.Х. Развитее. Строение структур, составляющих диоптрический и аккомодационный аппарат глаза. Строение и роль вспомогательного аппарата глаза.

Глаз – представлен периферической частью зрительного анализатора, в котором рецепторную функцию выполняют нейроны сетчатой оболочки. Глаз развивается из различных эмбриональных зачатков. Сетчатка и зрительный нерв формируются из нервной трубки, путем образования глазных пузырьков сохраняющих связь с эмбриональным мозгом при помощи полых глазных стебельков. Аккомодационный аппарат глаза (радужка, ресничное тело с реснич-ным пояском) обеспечивает изменение формы и преломляющей силы хру-сталика, фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Радужка. Представляет собой диско видное образование с отверсти-ем изменчивой величины (зрачок) в центре. Она является производным сосудистой (в основном) и сетчатой оболочек. В радужке различают 5 слоев: передний эпителий, покрывающий пере-днюю поверхность радужки, наружный пограничный (бессосудистый) слой, сосудистый слой, внутренний пограничный слой и пигментный эпителий. Ресничное тело является производным сосудистой и сетчатой оболочек. Выполняет функцию фиксации хрусталика и изменения его кривизны, тем самым, участвуя в акте аккомодации. Цилиарное тело подразделяется на две части: внутреннюю - цилиарную корону и наружную - цилиарное кольцо. Основная часть цилиарного тела, за исключением отрос-тков, образована ресничной, или цилиарной, мышцей, играющей важную роль в аккомодации глаза. Она состоит из пучков гладких мышеч-ных клеток, располагающихся в трех различных направлениях.

57. Орган слуха. М.Ф.Х. Развитее. Строение внутреннего уха, цитофизиология рецепторных клеток внутреннего уха. Представление о слуховом анализаторе.

Орган слуха, периферическая часть статоакустической системы, или преддверно-улитковый орган, наружное, среднее и внутреннее ухо. Осуществляет восприятие звуков, гравитационных и вибрационных стимулов. Рецепторные клетки (волосковые сенсорные эпителиоциты) представлены в спиральном органе улитки. Внутреннее ухо состоит из костного лабиринта и расположенного в нем перепончатого лабиринта, в котором находятся рецепторные клетки (волосковые сенсорные эпителиоциты). У эмбриона человека перепончатый лабиринт развивается путем впячивания в подлежащую эмбриональную соединитель-ную ткань эктодермы, которая затем замыкается и образует так называе-мый слуховой пузырек. Он располагается вблизи первой жаберной щели по обеим сторонам закладки продолговатого мозга. Одновременно слуховой пузырек контакти-рует с эмбриональным слуховым нервным ганглием, который вскоре делится на две части - ганглий преддверия и ганглий улитки. Восприятие звуков осуществляется в спиральном органе, расположенном по всей длине улиткового канала перепончатого лабиринта. Улитковый канал - стороны которого образованы вестибулярной мембраной (мембрана Рейсснера), сосудистой полоской, лежащей на наружной стенке костной улитки, и базилярной пластинкой. Вестибулярная мембрана обра-зует верхнемедиальную стенку канала. Наружная стенка образована сосудистой полоской, расположенной на спиральной связке. Спиральный орган расположен на базилярной пластинке перепончатого лабиринта. Состоит из двух групп клеток: сенсоэпителиальных и поддерживающих. Они делятся на внутренние и наружные.

58. Орган равновесия. Строение, развитее, функции. М.Ф.Х сенсоэпителиальных (волосковых) клеток.

Вестибулярная часть перепончатого лабиринта - это место расположения рецепторов органа равновесия. Она состоит из двух мешочков - эллипти-ческого, или маточки и сферического, или круглого, со-общающихся при помощи узкого канала и связанных с тремя полукружны-ми каналами, локализующимися в костных каналах, расположенных в трех взаимно перпендикулярных направлениях. Эти каналы на месте соединения их с эллиптическим мешочком имеют расширения - ампулы. В стенке пере-пончатого лабиринта в области эллиптического и сферического мешочков и ампул есть участки, содержащие чувствительные (сенсорные) клетки. В мешочках эти участки называются пятнами, или макулами, соответственно: пятно эллиптического мешочка и пятно круглого мешочка, а в ампулах - гребешками, или кристами. Пятна мешочков (макулы). Эти пятна выстланы эпителием, расположен-ным на базальной мембране и состоящим из сенсорных и опорных клеток. Поверхность эпителия покрыта особой студенистой отолитовой мембраной, в которую включены состоящие из карбоната кальция кристаллы - отолиты, или статоконии. Макула эллиптического мешочка - место восприятия линей-ных ускорений и земного притяжения (рецептор гравитации, связанный с изменением тонуса мышц, определяющих установку тела). Макула сфе-рического мешочка, являясь также рецептором гравитации, одновре-менно воспринимает и вибрационные колебания. Ампулярные гребешки – находятся в каждом ампулярном расширении полукружного канала. Ампулярный корешок выстлан сенсорными волосковыми и поддерживающими эпителиоцитами. Апикальная часть окружена прозрачным куполом – это рецептор угловых ускорений. При движении головы, вращении тела, купол легко меняет свое положение.

59. Понятие об иммунитете. М.Ф.Х. Т- лимфоцитов. Антигензависимая пролиферация.

Иммунная система объединяет органы и ткани, в которых происходит образование и взаимодействие клеток - иммуноцитов, выполняющих функцию распознавания генетически чужеродных субстанций (антиге-нов) и осуществляющих специфическую реакцию. Иммунитет - это защита организма от всего гене-тически чужеродного - микробов, вирусов, от чужих клеток или генетически измененных собственных клеток. Иммунная система обеспечивает поддержание генетической целост-ности и постоянства внутренней среды организма, выполняя функцию распознавания «своего» и «чужого». В организме взрослого человека она представлена красным костным мозгом - источником стволовых клеток для иммуноцитов, центральным органом лимфоцитопоэза (тимус), периферическими органами лимфоцитопоэза (селезенка, лимфатические узлы, скопления лимфоидной ткани в органах), лимфоцитами крови и лим-фы, а также популяциями лимфоцитов и плазмоцитов, проникающими во все соединительные и эпителиальные ткани. Главными клетками, осуществляющими контроль и иммунологичес-кую защиту в организме, являются лимфоциты, а также плазматические клетки и макрофаги. Антигены - это сложные органические вещества, способные при поступлении в организм человека и животных вызывать специфический им-мунный ответ. Антитела - это сложные белки, синтезируемые В-лимфоцитами и плазмоцитами, способные специфически соединяться с соответствующими антигенами и обезвреживать их. Обнаруже-ние антител в глобулиновой фракции белков крови обусловило их назва-ние - иммуноглобулины. Т-лимфоциты, они дифференцируются в вилочковой железе - тимусе, поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы - лимфатических узлах, селезенке. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. Эти рецеп-торы являются продуктами генов иммунного ответа. Т-лимфоциты обеспечивают клеточный иммунитет, участвуют в регуляции гуморального иммунитета, осуществляют продукцию цитокинов при действии антигенов. В популяции Т-лимфоцитов различают несколько Функциональных групп клеток: цитотоксические лимфоциты (Тц), или Т-киллеры (Тк), Т-хелперы (Тх), Т-супрессоры (Тс). Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов. Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфичес-кий тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совер-шается в центральных органах иммунитета под влиянием специфических факторов.

60. Понятие об иммунитете, иммунной системе и иммуннокомпетентных клетках. М.Ф.Х. В – лимфоцитов; рецепторы к антигенам; Антигеннезависимая и Антигензависимая пролиферация и дифференцировка; плазматические клетки.

Иммунная система объединяет органы и ткани, в которых происходит образование и взаимодействие клеток - иммуноцитов, выполняющих функцию распознавания генетически чужеродных субстанций (антиге-нов) и осуществляющих специфическую реакцию. Иммунитет - это защита организма от всего гене-тически чужеродного - микробов, вирусов, от чужих клеток или генетически измененных собственных клеток. Иммунная система обеспечивает поддержание генетической целост-ности и постоянства внутренней среды организма, выполняя функцию распознавания «своего» и «чужого». В организме взрослого человека она представлена красным костным мозгом - источником стволовых клеток для иммуноцитов, центральным органом лимфоцитопоэза (тимус), периферическими органами лимфоцитопоэза (селезенка, лимфатические узлы, скопления лимфоидной ткани в органах), лимфоцитами крови и лим-фы, а также популяциями лимфоцитов и плазмоцитов, проникающими во все соединительные и эпителиальные ткани. Главными клетками, осуществляющими контроль и иммунологичес-кую защиту в организме, являются лимфоциты, а также плазматические клетки и макрофаги. Антигены - это сложные органические вещества, способные при поступлении в организм человека и животных вызывать специфический им-мунный ответ. Антитела - это сложные белки, синтезируемые В-лимфоцитами и плазмоцитами, способные специфически соединяться с соответствующими антигенами и обезвреживать их. Обнаруже-ние антител в глобулиновой фракции белков крови обусловило их назва-ние - иммуноглобулины В-лимфоциты являются основными клетками, участвующими в гу-моральном иммунитете. У человека они образуются из СКК красного кост-ного мозга, затем поступают в кровь и далее заселяют В-зоны перифери-ческих лимфоидных органов - селезенки, лимфатических узлов, лимфоидные фолликулы многих внутренних органов. При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые посту-пают в кровь, лимфу и тканевую жидкость. Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов. Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфичес-кий тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совер-шается в центральных органах иммунитета под влиянием специфических факторов.

61. Понятие об иммунитете, иммунной системе и иммуннокомпетентных клетках. М.Ф.Х макрофагов: свободные и оседлые макрофаги и их образование, участие в иммунных реакциях, понятие о монокинах, кооперация иммунных клеток.

Иммунная система объединяет органы и ткани, в которых происходит образование и взаимодействие клеток - иммуноцитов, выполняющих функцию распознавания генетически чужеродных субстанций (антиге-нов) и осуществляющих специфическую реакцию. Иммунитет - это защита организма от всего гене-тически чужеродного - микробов, вирусов, от чужих клеток или генетически измененных собственных клеток. Иммунная система обеспечивает поддержание генетической целост-ности и постоянства внутренней среды организма, выполняя функцию распознавания «своего» и «чужого». В организме взрослого человека она представлена красным костным мозгом - источником стволовых клеток для иммуноцитов, центральным органом лимфоцитопоэза (тимус), периферическими органами лимфоцитопоэза (селезенка, лимфатические узлы, скопления лимфоидной ткани в органах), лимфоцитами крови и лим-фы, а также популяциями лимфоцитов и плазмоцитов, проникающими во все соединительные и эпителиальные ткани. Главными клетками, осуществляющими контроль и иммунологичес-кую защиту в организме, являются лимфоциты, а также плазматические клетки и макрофаги. Антигены - это сложные органические вещества, способные при поступлении в организм человека и животных вызывать специфический им-мунный ответ. Антитела - это сложные белки, синтезируемые В-лимфоцитами и плазмоцитами, способные специфически соединяться с соответствующими антигенами и обезвреживать их. Обнаруже-ние антител в глобулиновой фракции белков крови обусловило их назва-ние - иммуноглобулины. Макрофаги играют важную роль, как в естественном, так и в приобре-тенном иммунитете организма. Участие макрофагов в естественном имму-нитете проявляется в их способности к фагоцитозу и в синтезе ряда актив-ных веществ - пищеварительных ферментов, компонентов системы комп-лемента, фагоцитина, лизоцима, интерферона, эндогенного пирогена и др., являющихся основными факторами естественного иммунитета. Их роль в приобретенном иммунитете заключается в пассивной передаче антигена иммунокомпетентным клеткам (Т- и В-лимфоцитам), в индукции специ-фического ответа на антигены. Макрофаги также участвуют в обеспечении иммунного гомеостаза путем контроля над размножением клеток, характе-ризующихся рядом отклонений от нормы (опухолевые клетки).

62. Понятие об иммунитете и иммунной системе. Участие в защитных реакциях гранулоцитов: нейтрофилов, эозинофилов и базофилов.

Иммунная система объединяет органы и ткани, в которых происходит образование и взаимодействие клеток - иммуноцитов, выполняющих функцию распознавания генетически чужеродных субстанций (антиге-нов) и осуществляющих специфическую реакцию. Иммунитет - это защита организма от всего гене-тически чужеродного - микробов, вирусов, от чужих клеток или генетически измененных собственных клеток. Иммунная система обеспечивает поддержание генетической целост-ности и постоянства внутренней среды организма, выполняя функцию распознавания «своего» и «чужого». В организме взрослого человека она представлена красным костным мозгом - источником стволовых клеток для иммуноцитов, центральным органом лимфоцитопоэза (тимус), периферическими органами лимфоцитопоэза (селезенка, лимфатические узлы, скопления лимфоидной ткани в органах), лимфоцитами крови и лим-фы, а также популяциями лимфоцитов и плазмоцитов, проникающими во все соединительные и эпителиальные ткани. Главными клетками, осуществляющими контроль и иммунологичес-кую защиту в организме, являются лимфоциты, а также плазматические клетки и макрофаги. Антигены - это сложные органические вещества, способные при поступлении в организм человека и животных вызывать специфический им-мунный ответ. Антитела - это сложные белки, синтезируемые В-лимфоцитами и плазмоцитами, способные специфически соединяться с соответствующими антигенами и обезвреживать их. Обнаруже-ние антител в глобулиновой фракции белков крови обусловило их назва-ние - иммуноглобулины. При первичном и особенно при повторном введении антигенов наблюдаются увеличение числа и массовая дегрануляция тканевых базофилов. Появление в тканях избыт-ка гистамина приводит к увеличению числа эозинофилов, которые участвуют в его разрушении. Введение в организм большинства антигенов сопровождается увеличением числа эозинофилов в тка-нях и регионарных лимфатических узлах. В продуигивной фазе иммунитета (выработка антител) эозинофилы выполняют дезинтоксикационную функцию, участвуя в фагоцитозе и разрушении комплекса антиген - антитело.

Основные положения клеточной теории. Вклад Пуркине, Шванна, Вихрова и др. в учение о клетке. Определение клетки. Биологические мембраны клетки, их строение, химический состав и функции.

Клеточная теория - это обобщенное представление о строении клеток как единиц живого, об их воспроизведении и роли е формировании многоклеточных организмов. Прогресс в изучении морфологии клетки связан с успехами микроскопирования в XIX в, когда были описаны ядро и протоплазма (Я. Пуркинье, Р. Броун и др. Заслуга Т.Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он оценил их значение как основного структурного компонента организма. Дальнейшее развитие и обобщение эти представле­ния получили в работах немецкого патолога Р. Вирхова (1858). Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. К клеточным мембранам относятся: плазмолемма, кариолемма, мембраны метохондрий, эндоплазмотические сети, аппарат Гольджи, лизосомы, пероксисом. Общей чертой всех мембран клетки является то, что они представляют собой тонкие пласты липопротеидной природы (липиды с белками). Особенность липидов – разделение молекул на две части 1) гидрофобные не полярные, 2) гидрофильные. Мембраны различаются набором белковых молекул: 1 – часть, богатые полярными аминокислотами, 2 – часть обогащенные неполярными аминокислотам,

Основные положения клеточной теории. Определение клетки. Плазмолемма: строение, химический состав, функции. Структурно – функциональная характеристика различных видов межклеточного соединения.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Плазмолемма (plasmalemma), или внешняя клеточная мембрана, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а, следовательно, и со всеми веществами и стимулами, воздействующими на клетку. Основу плазмолеммы составляет липопротеиновый комплекс. Снаружи от плазмолеммы располагается надмембранный слой - гликокаликс – в составе, которого углеводы. Они образуют длинные цепочки полисахаридов, связанные с белками и липидами. Мембрана выполняет ряд важных функций: разграничение цитоплазмы с внешней средой, рецепции и транспорта разных веществ внутрь клетки и изнутри её. Межклеточные соединения. Их делят на простые и сложные. Сложные бывают запирающие, сцепляющие и коммуникационные контакты. К запирающим относятся плотные контакты. К сцепляющим относятся адгезивный поясок и десмосомы.

Основные положения клеточной теории. Определение клетки. Плазмолемма: строение, химический состав, функции. Специальные структуры на свободной поверхности клеток, их строение и значение.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Плазмолемма (plasmalemma), или внешняя клеточная мембрана, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а, следовательно, и со всеми веществами и стимулами, воздействующими на клетку. Основу плазмолеммы составляет липопротеиновый комплекс. Снаружи от плазмолеммы располагается надмембранный слой - гликокаликс – в составе, которого углеводы. Они образуют длинные цепочки полисахаридов, связанные с белками и липидами. Мембрана выполняет ряд важных функций: разграничение цитоплазмы с внешней средой, рецепции и транспорта разных веществ внутрь клетки и изнутри её. Плазмолемма многих клеток может образовывать выросты различной структуры. Они включат в свой состав специальные компоненты цитоплазмы (микротрубочки, фибриллы). Это приводит к развитию мембранных органелл – ресничек и жгутиков. Часто встречаются микроворсинки – выросты цитоплазмы. Они характерны для клеток эпителия.

Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, участвующих во внутриклеточном пищеварении, защитных и обезвреживающих реакциях.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга­неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран­ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ­ные филаменты). Цитоплазматическая сеть – это компонент цитоплазмы, состоящий из совокупностей вакуолей, плоских мембранных мешков или трубчатых образований создающих мембранную сеть внутри цитоплазмы. Выделяют два типа – зернистую и не зернистую эндоплазматическую сеть. Зернистая сеть – это замкнутые мембраны из цистерн и трубочек. Гладкая эндоплазматическая сет, возникает на основе зернистой сети. Её деятельность связана с метаболизмом липидов и полисахаридов. Также, выведению вредных веществ из организма. Пероксисомы – содержат гранулярный матрикс. Каталаза пероксисом играет важную защитную роль, т.к. H 2 O 2 является токсическим веществом для клетки.

Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, участвующие в процессах выведения веществ из клеток.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга­неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран­ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ­ные филаменты). Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). Здесь внутриклеточные продукты, заключенные в вакуоли проходят к плазмолемме. Этот процесс осуществляется при участии системы фибриллярных компонентов цитоплазмы, микротрубочки и сократимые микрофиламенты. Грануляционная эндоплазматическая сеть, участвует в синтезе белков выводимых из клетки (экспортируемые белки). Пероксисомы – содержат гранулярный матрикс. Каталаза пероксисом играет важную защитную роль, т.к. H 2 O 2 является токсическим веществом для клетки.

Основные положения клеточной теории. Определение клетки. Органеллы цитоплазмы: понятие и классификация. Структурно-функциональная характеристика органелл, составляющих цитоскелет клеток. Строение и значение центриолей, ресничек и жгутиков.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции. Классификация органелл. Различают мембранные и немембранные орга­неллы. Мембранные органеллы представлены цитоплазматической сетью (эндоплазматическим ретикулумом), пластинчатым комплексом (аппаратом Гольджи), митохондриями, лизосомами, пероксисомами. К немембран­ным органеллам относят рибосомы (полирибосомы), клеточный центр и элементы цитоскелета (микротрубочки, микрофиламенты и промежуточ­ные филаменты). Цитоскелет - опорно-двигательная система клетки, включающая не­мембранные белковые нитчатые образования, выполняющие как каркас­ную, так и двигательную функции в клетке. К этой системе отно­сятся фибриллярные структуры и микротрубочки. К фибриллярным компонентам относятся микрофиламен­ты, промежуточные филаменты, или микрофибриллы. В состав микрофиламентов кортикального слоя и пучков входят сократитель­ные белки: актин, миозин, тропомиозин, L – актинин. Центриоль – центр роста микротрубочек аксонемы ресничек или жгутиков. Она сама индуцирует полимеризацию тубулина при образовании микротрубочек в интерфазе. Перед митозом она является одним из центров полимеризации микротрубочек веретена клеточного деления. Реснички и жгутики – это специальные органеллы движения. Реснички – это тонкий цилиндрический вырост цитоплазмы. Благодаря ресничкам и жгутикам, свободная клетка способна двигаться. Неподвижные клетки движением ресничек могут перемещать жидкость.

Основные положения клеточной теории. Вклад Пуркине, Шванна, Вихрова и др. в учение о клетке. Определение клетки. Включение цитоплазмы: понятие и классификация; химическая и морфофункциональная характеристика.

Клеточная теория - это обобщенное представление о строении клеток как единиц живого, об их воспроизведении и роли е формировании многоклеточных организмов. Прогресс в изучении морфологии клетки связан с успехами микроскопирования в XIX в, когда были описаны ядро и протоплазма (Я. Пуркинье, Р. Броун и др. Заслуга Т.Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он оценил их значение как основного структурного компонента организма. Дальнейшее развитие и обобщение эти представле­ния получили в работах немецкого патолога Р. Вирхова (1858). Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. Включения цитоплазмы - необязательные компоненты клетки, возникающие и исчезающие в зависимости от метабо­лического состояния клеток. Различают включения трофические, секреторные, экскретор­ные и пигментные. К трофическим включениям относятся капельки нейтральных жиров, которые могут накапливаться в гиалоплазме. В случае недостатка субстратов для жизнедеятельности клетки эти капельки могут резорбироваться. Есть: Секреторные включения, экскреторные включения, пигментные включения.

Основные положения клеточной теории. Определение клетки. Неклеточные структуры организма (симпласты, синцитии, межклеточное вещество), их морфофункциональная характеристика. Взаимоотношение клеток и неклеточных структур.

Основные положения клеточной теории: 1) Клетка является наименьшей единицей живого, 2) клетки разных организмов принципиально сходны по своему строе­нию, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли кле­ток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточ­ными, гуморальными и нервными формами регуляции. Клетка - наименьшая единица живого. Представление о клетке как о наименьшей самостоятельной живой единице было известно из работ Т.Шванна и др. Р.Вирхов, каждая клетка несет в себе полную характеристику жизни. У животных организмов, отдельных клеток, встречаются некле­точные структуры - так называемые симпласты, синцитии и межклеточ­ное вещество. Симпласты - это крупные образования, состоящие из ци­топлазмы (протоплазмы) с множеством ядер и мышечные волокна позвоночных, наружный слой трофобдаста пла­центы и др. Они возникают вторично в результате слияния отдельных кле­ток или же при делении одних ядер без разделения цитоплазмы. Среди неклеточных структур различают еще межклеточное вещество – состоит из коллагеновых и эластических волокон, а также из основного аморфного вещества. Межклеточное вещество образуется путем секреции, из плазмы крови, поступающей в межклеточное пространство, оно обновляется в течение жизни.

Морфофункциональная характеристика эпителиальных тканей. Источники их развития. Классификация. Вклад Хлопина в изучение эпителиальных клеток, поляризация, специальные органеллы, межклеточные соединения. Строение и роль базальной мембраны.

Эпителиальные ткани - это совокупность дифферонов полярно диф­ференцированных клеток, тесно расположенных в виде пласта на базальной мембране, на границе с внешней или внутренней средой, а также об­разующих большинство желез организма. Различают поверхностные (покров­ные и выстилающие) и железистые эпителии. Классификация: Признаки: происхождение, строение функции. 1) Эпителии: однослойные и многослойные. В однослойных эпителиях все клетки связаны с базальной мембраной, в многослойных лишь один слой. 2) В соответствии с формой клеток: кубические и призматические. A) Однослойный эпителий: однорядный, многорядный. Б) Многослойный эпителий: ороговевающий, неороговевающий, переходный. В) Переходный эпителий. Н.Г. Хлопин создал онтофилогенетическую классификацию (Особенность развития эпителиев из тканевых зачатков). Она включает: эпидермальный (кожный), энтеродермальный (кишечный), целонефродермальный, ангеодермальный тип эпителия. Эпителий представляет собой пласты клеток – эпителиоцитов, которые имеют неодинаковую форму и строение в различных видах эпителия. Между клетками, составляющими пласт, нет межклеточного вещества. Клетки тесно связаны друг с другом, с помощью контактов: десмосом, щелевидными и плотными соединениями. Эпителии располагаются на базальных мембранах. Они образуются в результате деятельности клеток эпителия, и соединительной ткани. Эпителий не содержит кровеносных сосудов. Питание осуществляется диффузно через базальную мембрану. Эпителий обладает полярностью: базальные и апикальные отделы всего эпителиального пласта и соответствующих его клеток имеют разное строение.

Морфофункциональная характеристика. Покровного эпителия. Классификация. Однослойные эпителии: различные виды, источники их развития, строение, диффероны, кишечного эпителия. Физиологическая регенерация, локализация камбиальных клеток.

Поверхностные эпителии - это пограничные ткани, располагающиеся на поверхности тела (покровные), слизистых оболочках внутренних ор­ганов (желудка, кишечника, мочевого пузыря и др.) и вторичных полостей тела (выстилающие). Они отделяют организм и его органы от окружаю­щей их среды и участвуют в обмене веществ между ними, осуществляя фун­кции поглощения веществ (всасывание) и выделения продуктов обмена (экскреция). Покровный эпителий выполняет важную защитную функцию, предохраняя подлежащие ткани организма от различных внешних воздействий - химических, механических, инфекционных и др. Классификация. Эпителии: однослойные и многослойные. В однослойных эпителиях все клетки связаны с базальной мембраной, в многослойных лишь один слой. 2) В соответствии с формой клеток: кубические и призматические. A) Однослойный эпителий: однорядный, многорядный. Б) Многослойный эпителий: ороговевающий, неороговевающий, переходный. В) Переходный эпителий. Многослойный плоский неороговевающий эпителий. В нем различают три слоя: базальный (состоит из эпителиоцитов призматической формы, расположенных на базальной мембране), шиповатый слой (клетки неправильной многоугольной формы), плоский (поверхностный). Развивается из всех трех зародышевых листков, начиная с 3- ей четвертой недели эмбрионального развития. 1) Однослойный плоский эпителий представлен в организме мезотелием (эндотелий). Он покрывает серозные оболочки. Его клетки, мезотелиоциты, плоские, с неровными краями. Они содержат не одно, а два или три ядра. 2) Однослойный кубический эпителий. Его клетки имеют щеточную камеру и базальную изчерченность. 3) Однослойный призматический эпителий – характерен для среднего отдела пищеварительной системы. Его клетки связаны между собой с помощью десмосом, щелевых коммуникационных соединений по типу замка.

Морфофункциональная характеристика железистого эпителия. Источники их развития. Цитофизиологическая характеристика секреторного процесса. Типы секреции. Экзокринные железы: классификация, строение, регенерация.

Железистый эпителий, образующий многие железы, осуществляет секреторную функцию, т.е. синтезирует и выделяет специфические про­дукты - секреты, которые используются в процессах, протекающих в организме. Например, секрет поджелудочной железы участвует в переваривании белков, жиров и углеводов в тонкой кишке. Железистый эпителий состоит из железистых секреторных клеток – Гландулоцитов. Они осуществляют синтез и выделению секретов на поверхность кожи. Слизистых оболочек и полости рта. Гранулоциты лежат на базальной мембране. Ядра бывают обычно крупные, неправильной формы. У них хорошо развита гранулярная эндоплазматическая сеть. В клетках, синтезирующих небелковые секреты, выражена агранулярная эндоплазматическая сеть. В железистых клетках хорошо заметна полярная дифференцировка. Железы – органы, состоящие из секреторных клеток, вырабатывающие специфические вещества различной химической природы и выделяющие их выводные протоки – экзокринные железы. Они могут быть одноклеточными, и многоклеточными. Многоклеточные железы состоят из двух частей. Секреторных и выводных. Экзокринные железы: 1) Простые: разветвленные и неразветвленные (трубчатые и альвеолярные). 2) Сложные бывают: разветвленные и неразветвленные. А) Трубчатые, альвеолярные, и трубчато-альвеолярные. В железах проходит процесс физиологической регенерации (внутриклеточной или путем размножения).

20. Понятие о системе крови. Кровь как разновидность тканей внутренней среды. Форменные элементы крови и их количество. Эритроциты: размер, форма, строение, химический состав, функции, продолжительность жизни. Особенности строения и химического состава ретикулоцитов, их процентное содержание.

Система крови включает в себя кровь, органы кроветворения - крас­ный костный мозг, тимус, селезенку, лимфатические узлы, лимфоидную ткань некроветворных органов. Элементы системы крови имеют общее происхождение - из мезенхимы и структурно-функциональные особенности, подчиняются общим зако­нам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. Система крови тесно связана с лимфатической и иммунной системами. Образование иммуноцитов происходит в органах кроветворения, а их циркуляция и рециркуляция - в периферической крови и лимфе. Составные компоненты: плазма и взвешенный в ней форменные элементы. Все клетки крови развиваются из общей полипептидной стволовой клетки крови в эмбриогенезе, и после рождения. Кровь, является циркулирующей по кровеносным сосу­дам жидкой тканью, состоящей из двух основных компонентов, - плаз­мы и взвешенных в ней форменных элементов - эритроцитов, лейко­цитов и кровяных пластинок. К форменным элементам крови относятся эритроциты, лейкоциты и кровяные пластинки (тромбоциты). Ретикулоциты - безъядерные клетки, утратившие в процессе фило - и онтогенеза ядро и большинство органелл, неспособных к делению. Основная функция дыхательная, обеспечивается дыхательным пигментом – гемоглобином. Количество эритроцитов в норме 3,7 – 5,1 млн. мм3 (мкл). Продолжительность жизни эритроцитов составляет 120 дней. Эритроцит имеет двояковогнутую форму (дискоцит), плоская поверхность (планоцит), куполообразные, шаровидные, шиповидные. Размер эритроцитов: 7,5 мкм – нормоцит, микроциты (<7,5 мкм), макроциты (>7,5 мкм). Ретикулоциты – обязательная составная часть эритроцитов, их молодые формы. Или полихроматофильные эритроциты 1,5 %/. В них сохраняются рибосомы и эндоплазматическая сеть.

Понятие о системе крови. Форменные элементы крови и их количество. Классификация лейкоцитов. Лейкоцитарная формула. Незернистые лейкоциты (агранулоциты): разновидности, размеры, строение, функции, продолжительность жизни.

Система крови включает в себя кровь, органы кроветворения - крас­ный костный мозг, тимус, селезенку, лимфатические узлы, лимфоидную ткань некроветворных органов. Элементы системы крови имеют общее происхождение - из мезенхимы и структурно-функциональные особенности, подчиняются общим зако­нам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. К форменным элементам крови относятся эритроциты, лейкоциты и кровяные пластинки (тромбоциты). Эритроциты 3,9 – 5,5 х 10 12/л – мужчины, женщины – 3,7 – 4,9 х 10 12/л, лейкоциты – 4-9х10 9 /л. Тромбоциты – 2 – 4 х 10 9 /л. По морфологическим признакам и биологической роли лейкоци­ты подразделяют на две группы: зернистые лейкоциты, или грану­лоциты, и незернистые лейкоциты, или агранулоциты. К гранулоцитам относятся нейтрофильные, эозинофильные и базо­фильные лейкоциты. В соответствии с окраской: различают Нейтрофильные, эозинофильные и базофильные гранулоциты. 1)Нейтрофильные гранулоциты 2,0-5,5 109/л крови. 2) Эозинофильные гранулоциты – количество – 0,02 – 0,3 х 10 9 /л. 3) Базофильные гранулоциты, количество 0 – 0,06 х 10 9 /л. Агранулоциты (незернистые лейкоциты) - относятся лимфоциты и моноциты. 1) Лимфоциты - от 4,5 до 10 мкм. Среди них различают малые лимфоциты (диаметром 4,5-6 мкм), средние (диаметром 7-10 мкм) и боль­шие (диаметром 10 мкм и более). Кроме лимфоцитов встречаются лимфоплазмоциты около 1-2%. Основная функция лимфоцитов – участие в иммунных реакция. Среди лимфоцитов различают три основных функциональных класса: В-лимфоциты, Т-лимфоциты и нулевые лимфоциты. Продолжительность жизни лимфоцитов от нескольких недель до нескольких лет.

М.Ф.Х. и классификация мышечных тканей. Исчерченная скелетная мышечная ткань: источники развития, строение, иннервация. Строение основы сокращения мышечного волокна. Типы мышечных волокон. Регенерация.

Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.). Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина. Специальные сократительные органеллы - актина и миозина при обязательном участии ионов кальция. Связывание кислорода и создание его запаса на момент сокращения мышцы. Классификация. В зависимости от структуры органелл сокращения мышечные ткани делят на две группы: 1) Поперечно полосатые мышечные ткани, 2) Гладкие мышечные ткани. В соответствии с гисто генетическим принципом в зависимости от источника развития мышечные ткани делят на 5 типов: мезенхимные, эпидермальный, нейральные, целомические, соматические. Источником развития элементов скелетной поперечнополосатой мышечной ткани являются клетки миотомов - миобласты. Их дифференцировка продолжается в местах закладки других мышц. В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты - мышечные трубочки. Клетки другой линии остаются самостоятельными и дифференцируют­ся в миосателлитоциты. Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой. Мышечные волокна подразделяют на быстрые медленные и промежуточные. Регенерация. Пока организм растет, миосателлитоциты делятся, а дочерние клетки встраиваются в концы симпластов. По окончании роста размножение миосателлитоцитов затухает. При травме мышечное волокно повреждается и его фрагменты фагоцитируются макрофагами.

Морфофункциональная характеристика нервной ткани. Источники развития. Нервные волокна: определение, строение и функциональные особенности миелиновых и безмиелиновых нервных волокон. Регенерация нервных волокон.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже­ний, возбуждения, выработки импульса и передачи его. Она является осно­вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре­дой. Нервные клетки - основные струк­турные компоненты нервной ткани, выполняющие специфическую функ­цию. Нейроглия обеспечивает существование и функционирова­ние нервных клеток, осуществляя опорную, трофическую, разграничитель­ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Отростки нервных клеток, покрытые оболочками называются нервными волокнами. По строению оболочек различают: миелиновые и безмиелиновые. Отросток нервной клетки называют осевым цилиндром или аксоном. 1) Безмиелиновые нервные волокна находятся в составе вегетативной нервной системы. Они располагаются плотно, образуя тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. 2) Миелиновые нервные волокна, встречаются в центральной и периферической нервной системе. Они толще предыдущих. Они состоят из осевого цилиндра. В миелиновом волокне два слоя оболочек: 1) Миелиновые, 2) нейролемма. Регенерация зависит от места травмы. Погибшие нейроны не восстанавливаются. Нервные волокна в составе периферических нервов обычно хорошо регенерируют (головной и спинной мозг).

Морфофункциональная характеристика нервной ткани. Источники развития. Рефлекторные дуги: понятие, строение простых и сложных дуг. Нейронная теория, вклад зарубежных и советских ученых в её становление и утверждении.

Нервная ткань - это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздраже­ний, возбуждения, выработки импульса и передачи его. Она является осно­вой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей сре­дой. Нервные клетки - основные струк­турные компоненты нервной ткани, выполняющие специфическую функ­цию. Нейроглия обеспечивает существование и функционирова­ние нервных клеток, осуществляя опорную, трофическую, разграничитель­ную, секреторную и защитную функции. Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Латеральные края – нервную трубку. Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: вентрикулярная, субвентрикулярная, промежуточная и краевая. Нервная ткань входит в состав нервной системы, функционирующей по рефлекторному принципу, основой которого является рефлекторная дуга. Она представляет собой цепь нейронов, связанных друг с другом синапсами. Обеспечивает проведение нервного импульса от рецептора до эфферентного окончания в рабочем органе. Простая рефлекторная дуга состоит из двух нейронов чувствительного и двигательного. Между их нейронами включены вставочные нейроны.

Головной мозг. М.Ф.Х. больших полушарий, особенности строения в двигательных и чувствительных зонах. Миелоархитектоника. Гемато-энцифалический барьер, его строение и значение. Возрастные изменения коры.

В головном мозге различают белое и серое вещество. Большая часть серого вещества располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга. Кора представлена слоем серого вещества толщиной около 3 мм. Мультиполярные нейроны коры: 1) Пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны. Нейроны коры расположены Нерезко ограниченными слоями. В двигательной зоне различают шесть основных слоев: молекулярный, наружный зернистый, слой пирамидных нейронов, внутренний зернисты, ганглионарный, слой полиморфных клеток. В период развития первым на шестом месяце дифференцируются пятый и шестой слои, а на восьмом – второй, третий, четвертый слои. Среди нервных волокон коры выделяют ассоциативные волокна, комиссуральные, проекционные волокна. Эти волокна в коре полушарий образуют радиальные лучи, заканчивающиеся в пирамидном слое. В процессе развития коры в оногенезе отмечаются изменения в распределении и структуре нейронов и глиоцитов, кровеносных сосудов. У взрослых людей – уменьшается число нейронов в коре на единицу объема (зависит от гибели части нейронов).

Понятие об иммунитете, иммунной системе и иммуннокомпетентных клетках. М.Ф.Х. В – лимфоцитов; рецепторы к антигенам; Антигеннезависимая и Антигензависимая пролиферация и дифференцировка; плазматические клетки.